簡易檢索 / 詳目顯示

研究生: 洪立晏
Hung, Li-Yen
論文名稱: 利用電化學表面增強拉曼光譜測定金屬串錯合物中金屬之間鍵結強度
Determination of the Metal-Metal Bonding Strength in Metal-String Complexes Using Electrochemical Surface-Enhanced Raman Spectroscopy
指導教授: 陳益佳
Chen, I-Chia
口試委員: 陳仁焜
Chen, Jen-Kun
黃暄益
HUANG, HSUAN-YI
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 127
中文關鍵詞: 拉曼表面增強拉曼電化學表面增強拉曼金屬串錯合物
外文關鍵詞: Raman, SERS, ECSERS, Metal-string
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用拉曼光譜研究Ni2(TPG)4及[Ni2(TPG)4]+-BF4雙核金屬錯合物、Ni3(dpa)4(NCS)2、Ni3(dpa)4Cl2 (dpa=di-pyridyl-amindo)直線型三核金屬串錯合物與互為鏡像異構物的Δ-[Ni5((-)camnpda)4]及Λ-[Ni5((+)camnpda)4]的振動模式,以了解其中不同價數的鎳-鎳鍵結強度。我們利用He-Ne雷射(632.8 nm)為激發光源及高解析拉曼光譜系統,測量了錯合物的固態拉曼光譜、表面增強拉曼光譜 (SERS) 及電化學表面增強拉曼光譜 (ECSERS),配合循環伏安法及電化學吸收的結果指認三核鎳金屬串錯合物中金屬的價數及拉曼譜帶進行指認。在三核鎳金屬串分子SERS中,我們將其與固態拉曼光譜比較的結果,發現光譜位置會受到金屬奈米粒子表面熱電子的影響,還原金屬串分子。Ni3(dpa)4(NCS)2、Ni3(dpa)4Cl2兩者之中心金屬價數皆為[Ni3]6+共有24個軌域電子,其電子組態為全填滿之(σ)2(π)4(δ)2(n8)(δ*)2(π*)4(σ*)2,鍵序為0,沒有找到[Ni3]之對稱振動譜帶,在金奈米粒子中還原成[Ni3]5+其對稱伸縮之頻率為242 cm-1。利用ECSERS技術,將[Ni3]5+之錯合物加電壓至+0.3 V (E(V) vs Ag/AgCl),242 cm-1譜帶消失。電壓加至+1.1 V (E(V) vs Ag/AgCl),在 350 cm-1處有一譜帶生成。循環伏安法結果,在+1.1 V 有一氧化還原峰,因此指認350 cm-1為[Ni3]7+之對稱伸縮振動頻率。而沒有軸向配位基之[Ni3(dpa)4]3+(PF6)3之價數為[Ni3]7+,其對稱伸縮振動頻率為355 cm-1,與有軸向配位基之位置相近。Ni2(TPG)4中鎳-鎳之鍵序為0,以AgBF4氧化後形成[Ni2(TPG)4]+-BF4,價數為[Ni2]5+,鍵序為0.5,Ni-Ni間伸縮振動頻率為322 cm-1,在Δ-[Ni5((-)camnpda)4]及Λ-[Ni5((+)camnpda)4]中Ni-Ni伸縮振動頻率被指認為327 cm-1,價數為[Ni2]3+。我們亦利用ECSERS技術研究直線金屬異核錯合物Ru2Ni(dpa)4Cl2中之Ru-Ru間伸縮振動頻率。Ru2Ni(dpa)4Cl2之固態拉曼光譜中Ru-Ru間伸縮振動頻率為327 cm-1,價數為[Ru2]5+,在SERS光譜中被金奈米粒子還原成[Ru2]4+振動頻率為312 cm-1。將其加電壓可發現327、333及337 cm-1譜帶出現並且比例變多,吾人分別指認 [Ru2]價數為+5、+5及+6。其中327 cm-1之金屬價數為[Ru2]5+Ni1+而333 cm-1則為[Ru2]5+Ni2+,此藍移現象可能為鎳從+1價氧化為+2價後,鎳與[Ru2]5+之鍵結變弱,使釕-釕鍵結增強。在本篇論文中我們成功地利用ECSERS技術觀察到金屬串錯合物在不同氧化態下之振動譜帶,將來若有其他不穩定之氧化態晶體因而無法檢測其固體粉末拉曼光譜,可以以ECSRES技術解決這個問題。


    We study the bond strength of nickel-nickel bond in metal string complexes by using electrochemical surface enhanced Raman spectroscopy (ECSERS). The technique is employed by recording the SERS signal during the electrochemical processes while molecules are absorbed on an electrode surface coated with nanoparticles and applied electric potentials. Using regular electrodes, the ultraviolet-visible absorption spectra can be recorded during redox reactions. There is no Ni3 sym. stretching bandνNi3 sym. assigned in solid Raman spectra of Ni3(dpa)4(NCS)2 (dpa = di-pyridyl amindo) and Ni3(dpa)4Cl2. All the bonding and antibonding d orbitals of Ni3 are filled, thus, no metal-metal bonding in [Ni3]6+. This can be the reason that noνNi3 sym. is assigned. In gold nanoparticle (AuNP) SERS, positions of all modes are the same as those in solid except that one new band appears at 242 cm-1. We infer that complex was reduced by hot electron from AuNP upon photoexcitation. Hence, 242 cm-1 is assigned to the νNi3 sym of [Ni3]5+. In the ECSERS curves only the 240 cm-1 band disappeared at +0.3 V. When applied voltage to +1.1 V, one addition band at 351 cm-1 appeared. We assigned the new band toνNi3 sym of [Ni3]7+. In order to confirm the metal bond of [Ni3]5+ and [Ni3]7+ are localized or delocalized, we obtained the solid Raman spectra of Ni2(TPG)4-BF4, Δ-[Ni5((-)camnpda)4], and Λ-[Ni5((+)camnpda)4]. For Ni2(TPG)4-BF4, we assigned the Raman band at 322 cm-1 to Ni2+–Ni3+ stretch. For Δ-[Ni5((-)camnpda)4] and Λ-[Ni5((+)camnpda)4], we assigned the Raman band at 327 cm-1 to Ni2+–Ni1+ stretch. Based on these data we can confirm that the [Ni3]5+ and [Ni3]7+ are delocalized three metal center bonding. Besides, we also use the same technique to obtain the Ru-Ru stretching wavenumber of Ru2Ni(dpa)4Cl2. In solid Raman spectra of Ru2Ni(dpa)4Cl2, we assigned the band at 327 cm-1 for Ru3+-Ru2+ stretch. νRu-Ru in AuNP SERS, this 327 cm-1 band is shifted to 312 cm-1, hence we infered that [Ru2]5+ was reduced to [Ru2]4+ by AuNP. In ECSERS, when increasing the applied voltage , the 312 cm-1 band became broad. We deconvoluted the broad band and found that as the voltage was increased, the band position blue-shifted more. Refer to the previous study (J. Phys. Chem. C 2016, 120, 20297−20302 ), we infer that we successfully use ECSERS to trace the valence state of Ru2 moiety and assign 312, 327, 333, and337 cm-1 to [Ru2]4+, [Ru2]5+, [Ru2]5+, and[Ru2]6+ , respectively. The Ru-Ru stretching wavenumber of [Ru2]5+Ni1+ is 327 cm-1 and [Ru2]5+Ni2+ is 333 cm-1. This blue-shift phenomenon may be that nickel is oxidizes from +1 to +2, the interaction of nickel and [Ru2]5+ is weakened, resulting in strong Ru-Ru bonding. In this thesis, we have successfully used the ECSERS technique to observe the vibrational bands of metal complexes in different oxidation states. In the future, if other unstable oxidation state of complex crystals cannot detected by the solid Raman spectrum, we can use ECSRES to solves this problem.

    第一章 序論 1 1.1 直線型三核金屬串錯合物的相關研究 1 1.1.1 直線型多核混金屬串錯合物 1 1.2 金屬鍵結理論 2 1.2.1 雙核金屬錯合物之金屬鍵結理論 2 1.2.2 三核金屬錯合物之金屬鍵結理論 3 1.3 Ni2(TPG)4和Ni2(TPG)4-BF4 之物理性質 4 1.4 Ni3(dpa)4Cl2 和Ni3(dpa)4(NCS)2 之物理性質 4 1.5 Δ-[Ni5((-)camnpda)4]、Λ-[Ni5((+)camnpda)4]之物理性質 6 1.6 [Ru2M(dpa)4Cl2] (M=Cu, Ni) 之物理性質 7 1.7 電化學表面增強拉曼光譜 7 1.8 電化學吸收光譜 8 1.9 實驗目標 8 1.10 拉曼散射與表面增強拉曼散射原理 9 第二章 實驗儀器與樣品製備 30 2.1 拉曼光譜系統 30 2.1.1 雷射光源 30 2.1.2 光路設計與元件說明 31 2.1.3 分光與偵測系統 32 2.1.4 光譜位置校正 33 2.2 樣品製備與實驗方法 34 2.2.1 固態拉曼光譜實驗 34 2.2.2 表面增強拉曼散射光譜實驗 34 2.2.3 奈米金粒子的製備 35 2.2.4 奈米銀粒子的製備 35 2.2.5 奈米粒子表面的特性與金屬串分子對奈米粒子的修飾 36 2.3 電化學 37 2.3.1 電化學表面增強拉曼散射光譜 37 2.3.2 SERS活性金電極備製 38 2.3.3 循環伏安法測量 38 2.3.4 電化學吸收光譜測量 38 2.4 紅外光吸收光譜、霍氏轉換紅外光吸收光譜實驗 39 第三章 實驗結果 42 3.1 二鎳金屬錯合物及其氧化物之固態拉曼光譜 42 3.2 三鎳金屬串錯合物及五鎳金屬串錯合物之固態拉曼光譜 42 3.3 Ru2M(dpa)4Cl20,1+ ( M=Ni, Cu )之固態拉曼光譜 43 3.4 三核金屬串錯合物之電化學表面增強拉曼散射光譜 43 3.5 雙核金屬錯合物之紫外-可見-近紅外光吸收光譜 44 3.6 三核金屬串錯合物之電化學吸收光譜 45 3.7 金屬串錯合物之紅外光吸收光譜 45 3.8 三核金屬串錯合物之循環伏安譜 46 3.9 加入AgPF6以氧化三核金屬串錯合物 46 第四章 光譜分析與討論 87 4.1 討論 87 4.2 光譜分析與指認 87 4.3 二鎳金屬錯合物之拉曼光譜分析 87 4.4 二鎳金屬錯合物之吸收光譜分析 88 4.5 三鎳金屬錯合物光譜分析 89 4.6 三鎳金屬串錯合物的ECSERS光譜分析 90 4.7 三鎳金屬串錯合物的電化學-吸收光譜分析 90 4.8 三鎳金屬串錯合物的氧化物光譜分析 91 4.9 不同價數三鎳金屬串錯合物的吸收光譜分析 92 4.10 五鎳金屬串錯合物的光譜分析 92 4.11 不同價數之鎳金屬串錯合物的綜合討論 93 4.12 Ru2M(dpa)4Cl2 (M=Ni, Cu)及氧化物之拉曼光譜分析 94 4.13 Ru2M(dpa)4Cl2 (M=Ni, Cu)之ECSERS光譜分析 95 第五章 結論 112 附錄 119 參考文獻 123

    1. Hurley, T. J.; Robinson, M. A. Nickel(II)-2,2'-bipyridylamine system. Synthesis and stereochemistry of the complexes. Inorg. Chem. 1968, 7, 33-38.
    2. Aduldecha, S.; Hathaway, B. J. J. Crystal structure and electronic properties of tetrakis[µ3-bis(2-pyridyl)amido]dichlorotrinickel(II)–water–acetone(1/0.23/0.5) Chem. Soc., Dalton Trans. 1991, 4, 993-998.
    3. Huang, G.-C.; Bénard, M.; Rohmer, M.-M.; Li, L.-A.; Chiu, M.-J.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M.Eur. J. Ru2M(dpa)4Cl2 (M = Cu, Ni): Synthesis, Characterization, and Theoretical Analysis of Asymmetric Heterometal String Complexes of the Dipyridylamide Family. Inorg. Chem. 2008, 1767-1777.
    4. Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. J. Molecular and Electronic Structures by Design:  Tuning Symmetrical and Unsymmetrical Linear Trichromium Chains. Am. Chem. Soc. 2004, 126, 7082-7096.
    5. Berry, J. F.; Bothe, E.; Cotton, F. A.; Ibragimov, S. A.; Murillo, C. A.; Villagrán, D.; Wang, X. Metal−Metal Bonding in Mixed Valence Ni25+ Complexes and Spectroscopic Evidence for a Ni26+ Species. Inorganic chemistry 2006, 45, 4396-4406.
    6. Yu, C.-H.; Kuo, M.-S.; Chuang, C.-Y.; Lee, G.-H.; Hua, S.-A.; Jin, B.-Y.; Peng, S.-M. Chirality Control of Quadruple Helixes of Metal Strings by Peripheral Chiral Ligands. Chem. Asian J. 2014, 9, 3111–3115.
    7. 尤崇翰,國立台灣大學博士論文,西元2017年。
    8. 蕭忠仁,國立清華大學化學系碩士論文,西元2008年。
    9. Kiehl, P.; Rohmer, M.-M.; Benard, M. Electron Delocalization in Nickel Metallic Wires: A DFT Investigation of Ni3(dpa)4Cl2 and [Ni3(dpa)4]3+ (dpa = Dipyridylamide) and Extension to Higher Nuclearity Chains. Inorg. Chem. 2004, 43, 3151–3158.
    10. Hirao, T. Redox Systems Under Nano-Space Control
    11. 林俊佑,國立清華大學化學系碩士論文,西元2015年。
    12. Cle´rac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. Further Study of the Linear Trinickel(II) Complex of Dipyridylamide. Inorg. Chem. 1999, 38, 2655-2657.
    13. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A. A Trinickel Dipyridylamido Complex with Metal−Metal Bonding Interaction:  Prelude to Polynickel Molecular Wires and Devices? J. Am. Chem. Soc. 2002, 124, 3212-3213.
    14. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Oxidation of Ni3(dpa)4Cl2 and Cu3(dpa)4Cl2:  Nickel−Nickel Bonding Interaction, but No Copper−Copper Bonds. Inorg. Chem. 2003, 42, 2418-2427.
    15. Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Wang, X. Enhancing the Stability of Trinickel Molecular Wires and Switches:  Ni36+/Ni37+. Inorg. Chem. 2003, 42, 3595-3601.
    16. Cotton, F. A.; Daniels, L. M.;Jordan, G. T., IV; Murillo, C. A. Symmetrical and Unsymmetrical Compounds Having a Linear Co36+ Chain Ligated by a Spiral Set of Dipyridyl Anions. J. Am. Chem. Soc. 1997, 119, 10377-10381.
    17. Cotton, F. A.; Murillo, C. A.; Wang, X. Linear Tricobalt Compounds with Di-(2-pyridyl)amide (dpa) Ligands:  Studies of the Paramagnetic Compound Co3(dpa)4Cl2 in Solution. Inorg. Chem. 1999, 38, 6294-6297.
    18. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.; Wang, X. Linear Tricobalt Compounds with Di(2-pyridyl)amide (dpa) Ligands:  Temperature Dependence of the Structural and Magnetic Properties of Symmetrical and Unsymmetrical Forms of Co3(dpa)4Cl2 in the Solid State. J. Am. Chem. Soc. 2000, 122, 6226-6236.
    19. Cle´rac, R.; Cotton, F. A.; Dunbar, K. R.; Lu, T.; Murillo, C. A.; Wang, X. New Linear Tricobalt Complex of Di(2-pyridyl)amide (dpa), [Co3(dpa)4(CH3CN)2][PF6]2 . Inorg. Chem. 2000, 39, 3065-3070.
    20. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Tuning the Metal−Metal Bonds in the Linear Tricobalt Compound Co3(dpa)4Cl2:  Bond-Stretch and Spin-State Isomers. Inorg. Chem. 2001, 40, 1256-1264.
    21. Cle´rac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.; Wang, X. Compounds with Symmetrical Tricobalt Chains Wrapped by Dipyridylamide Ligands and Cyanide or Isothiocyanate Ions as Terminal Ligands. Inorg. Chem. 2001, 40, 1265-1270.
    22. Cle´rac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.; Wang, X. Structural and magnetic properties of Co3(dpa)4Br2. J. Chem. Soc., Dalton Trans., 2001, 386-391.
    23. Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K. An Efficient Synthesis of Acetylide/Trimetal/Acetylide Molecular Wires. Inorg. Chem. 2004, 43, 2277-2283.
    24. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Lu, T.; Murillo, C. A.; Wang, X. A New Linear Tricobalt Compound with Di(2-pyridyl)amide (dpa) Ligands:  Two-Step Spin Crossover of [Co3(dpa)4Cl2][BF4] .J. Am. Chem. Soc. 2000, 122, 2272-2278.
    25. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.;Pascual, I. Linear Trichromium Complexes with Direct Cr to Cr Contacts. 1. Compounds with Cr3(dipyridylamide)42+ Cores. Inorg. Chem. 2000, 39, 748-751.
    26. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.;Pascual, I. Linear Trichromium Complexes with Direct Cr to Cr Contacts. 2. Compounds with Cr3(dipyridylamide)43+ Cores. Inorg. Chem. 2000, 39, 752-756.
    27. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Zhou, H.-C. Linear Trichromium Complexes with the Anion of 2,6-Di(phenylimino)piperidine. Inorg. Chem. 2000, 39, 3414-3417.
    28. Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. Molecular and Electronic Structures by Design:  Tuning Symmetrical and Unsymmetrical Linear Trichromium Chains. J. Am. Chem. Soc. 2004, 126, 7082-7096.
    29. 謝明勳,九十學年度國立台灣大學碩士論文。
    30. (a) Cotton, F. A.; Walton, R. A. Multiple Bonds Between Atoms, 2nd ed.; Clarendon Press: Oxford, 1993.
    (b) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed., Wiley, New York, 1988, Chap. 23.
    31. Wang, C.-C.; Lo, W.-C.; Chou, C.-C.; Lee, G.-H.; Chen, J.-M.; Peng, S.-M. Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(II) Complexes:  [Ni5(μ5-tpda)4X2] (X = Cl-, CN-, N3-, NCS-) and [Ni5(μ5-tpda)4(CH3CN)2]- (PF6)2 (tpda2- = the Tripyridyldiamido Dianion). Inorg. Chem. 1998, 37, 4059-4065.
    32. Wu, B.-H.; Lin, J.-Y.; Ho, K.-Y.; Huang, M.-J.; Hua, S.-A.; Cheng, M.-C.; Yang, Y.-W.; Peng, S.-M.; Chen, C.-h.; Chen, I.-C. Determination of the Valence State of Diruthenium Moiety Using Redox Reactions and Surface-Enhanced Raman Scattering: Application in Heterometal Extended Metal-Atom Chain Diruthenium Nickel Complexes . J. Phys. Chem. C. 2016, 120, 20297−20302
    33. 黃育民 國立清華大學化學系碩士論文,西元2010年。
    34. Soriaga, E.-B.; Keder, N.-L; Kaska, W.-C. Synthesis and properties of binuclear ruthenium complexes with 2,7-bis(2-pyridyl)-1,8-naphthyridine (bpnp). X-ray crystal structure of [Ru2(.mu.-O2CCH3)3bpnp]PF6. Inorg. Chem. 1990, 29, 3167-3171
    35. 台大化學系彭旭明實驗室X-ray晶體繞射數據。

    QR CODE