簡易檢索 / 詳目顯示

研究生: 江禹安
Chiang, Yu-An
論文名稱: 應用穿透率極值光彈理論於自動化應力量測之可行性研究
INVESTIGATION OF APPLICABILITY OF TEToP ON AUTOMATIC STRESS MEASUREMENT
指導教授: 王偉中
口試委員: 蔣長榮
羅鵬飛
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 89
中文關鍵詞: 穿透率極值光彈理論應力量測光彈法光譜儀玻璃
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國立清華大學光測力學實驗室所發展之穿透率極值光彈理論(Transmissivity Extremity Theory of Photoelasticity, TEToP)為結合光譜儀與白光光彈法建立應力對應穿透率之三維系統化關係,進而量測物體內低階應力之量測法,且基於光譜儀之高靈敏度、高解析度及白光光彈法之高準確度等特質,TEToP比一般光彈法更能準確地量測待測試片之應力。
    本研究主要目的為繼續發展TEToP之量測理論,首先必須由得到之應力對應穿透率光譜之三維系統化關係,進而驗證各穿透率極值線性關係(Transmissivity Extremity Linear Equation, TELE)間之相關性。此外,本研究也針對TEToP於不同厚度試片量測之情形進行探討,驗證不同厚度下TELE與厚度間之比例關係。本研究藉由上述作法進而驗證TEToP發展成為自動化應力量測之可行性。本研究中將以玻璃及PSM-1等透明材料來驗證TEToP應用的一般性。


    一、 簡介 1 二、 文獻回顧 3 三、 實驗原理 8 3.1 應力與穿透率光譜間之特殊關係 9 3.2 平面偏光儀下之等色線條紋穿透率光譜方程式 12 3.3 穿透率極值光彈理論之應力量化公式[27] 15 3.4 迴歸分析取得應力量化公式參數[4] 17 3.5 不同穿透率極值線性相關關係[4] 21 3.6 應力量化公式與試片厚度間之關係[4] 22 四、 實驗試片與裝置 24 4.1 實驗試片 24 4.2 實驗裝置 26 五、 實驗分析程序 30 六、 實驗結果與討論 34 6.1 同厚度下穿透率極值線性關係式之比例關係 34 6.1.1 PSM-1試片實驗結果 34 6.1.2 玻璃試片實驗結果 38 6.2 不同厚度下穿透率極值線性關係式之比例關係 40 6.2.1 PSM-1試片實驗結果 40 6.2.2 玻璃試片實驗結果 43 七、 結論與未來展望 46 7.1 結論 46 7.2 未來展望 47 八、 參考文獻 50

    [1] 王偉中、黃吉宏、宋泊錡、陳維仁及賴冠廷,”量化材料未知應力與殘餘應力之裝置及其方法,中華民國發明專利,申請號101109034,2012。
    [2] W. C. Wang, C. H. Hwang, P. C. Sung, W. R. Chen and G. T. Lai. “An Apparatus for Quantifying Unknown Stress and Residual Stress of a Material and a Method Thereof,” U.S.A. Invention Patent, Patent Applied Number:1006085, 2012.
    [3] P. C. Sung, W. C. Wang, C. H. Hwang, and G. T. Lai, “A Novel Stress Measurement Method by Integrating White Light Photoelasticity and Spectrometry,” Proceedings of 2012 IUTAM Symposium on Advances of Optical Methods in Experimental Mechanics, Paper no. G10, Taipei, Taiwan, November 3-6, 2012.
    [4] 此部分與本實驗室宋泊錡共同討論而得。
    [5] J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” Chapters 12-13,3rd ed., McGraw-Hill, New York, U.S.A., 1991.
    [6] V. V. Protopopov, S. Cho, K. Kim, and S. Lee, “Heterodyne Double-Channel Polarimeter for Mapping Birefringence and Thickness of Flat Glass Panels,” Review of Scientific Instruments, vol. 77, no. 5, pp. 053107/1-6, 2006.
    [7] H. F. Chang, C. Chou, H. K. Teng, H. T. Wu, and H. F. Yau, “The Use of Polarization Modulation and Amplitude-Sensitive Optical Heterodyne Interferometry for Linear Birefringence Parameters Measurement,” Optics Communications, vol. 260, pp. 420-426, 2006.
    [8] H. J. Peng, S. P. Wong, Y. W. Lai, X .H. Liu, H. P. Ho, and S. Zhao, “Simplified System Based on Photoelastic Modulation Technique for Low-Level Birefringence Measurement,” Review of Scientific Instruments, vol. 74, pp. 4745-4749, 2003.
    [9] B. Wang, and T. C. Oakberg, “A New Instrument for Measuring both the Magnitude and Angle of Low Level Linear Birefringence,” Review of Scientific Instruments, vol. 70, pp. 3847-3854, 1999.
    [10] B. Wang, “Linear Birefringence Measurement Instrument Using Two Photoelastic Modulators,” Optical Engineering, vol. 41, no. 5, pp. 981-987, 2002.
    [11] A. Ajovalasit, S. Barone, G. Petrucci, “A Review of Automated Methods for the Collection and Analysis of Photoelastic Data,” Applied Optics, 1997, vol.33, no.2, pp.75-91.
    [12] A. S. Redner, “Photoelastic Measurements by Means of Computer-Assisted Spectral Contents Analysis,” Experimental Mechanics, vol. 25, no. 2, pp. 148-153, 1985.
    [13] A. Ajovalasit, S. Barone, and G. Petrucci, “Towards RGB Photoelasticity: Full-Field Automated Photoelasticity in White Light,” Experimental Mechanics, vol. 35, no. 3, pp. 193-200, 1995.
    [14] A. Ajovalasit, S. Barone, and G. Petrucci, “Phase Shifting Photoelasticity in White Light,” Optics and Lasers in Engineering, vol. 45, pp. 596-611, 2007.
    [15] K. Ramesh and S.S. Deshmukh, “Three Fringe Photoelasticity - Use of Colour Image Processing Hardware to Automate Ordering of Isochromatics,” Strain, vol. 32, no. 3, pp. 79-86, 1996.
    [16] K. R. Madhu and K. Ramesh, “Noise Removal in Three-Fringe Photoelasticity by Adaptive Colour Difference Estimation,” Optics and Lasers in Engineering, vol. 45, pp. 175-182, 2007.
    [17] K. Oka, and T. Kato, “Spectroscopic Polarimetry with a Channeled Spectrum,” Optics Letters, vol. 24, no. 21, pp.1475-1477, 1999.
    [18] T. Wakayama, H. Kowa, Y. Otani, N. Umeda, and T. Yoshizawa, “Birefringence Dispersion Measurement by Geometric Phase,” Proceedings of SPIE, vol.4902, pp. 406-411, 2002.
    [19] T. Wakayama, Y. Otani, and N. Umeda, “Birefringence Dispersion Measurement Based on Achromatic Four Points of Geometric Phase,” Optical Engineering, vol. 45, no. 8, pp. 083603/1-5, 2006.
    [20] T. Wakayama, H. Kowa, Y. Otani, N. Umeda, and T. Yoshizawa, “Two-Dimensional Measurement of Birefringence Dispersion Using Spectroscopic Polarization Light,” Proceedings of SPIE, vol. 4191, pp. 176-182, 2002.
    [21] T. Wakayama, H. Kowa, Y. Otani, N. Umeda, and T. Yoshizawa, “Two-Dimensional Measurement of Birefringence Dispersion Using Spectroscopic Polarized Light,” Optical Engineering, vol. 45, no. 3, pp. 033601/1-6, 2006.
    [22] T. Wakayama, Y. Otani, and N. Umeda, “Real-Time Measurement for Birefringence Dispersion Using Double Retarder,” Proceedings of SPIE, vol. 5888, pp. 588807/1-6, 2005.
    [23] T. Wakayama, Y. Otani, and N. Umeda, “One-Shot Birefringence Dispersion Measurement Based on Channeled Spectrum Technique,” Optics Communications, vol. 281, pp. 3668-3672, 2008.
    [24] Y. Otani, T. Wakayama, K. Oka, and N. Umeda, “Spectroscopic Muller Matrix Polarimeter Using Four-Channeled Spectra,” Optics Communications, vol. 281, pp. 5725-5730, 2008.
    [25] Y. Otani, and T. Wakayama, “Two-Dimensional Measurement of Birefringence Dispersion,” Proceedings of the International Symposium to Commemorate the 60th Anniversary of the Invention of Holography, pp. 178-182, Springfield, MA, U. S. A., Oct. 27-29, 2008.
    [26] W. C. Wang, C. H. Hwang, W. R. Chen, and P. C. Sung, “A New Stress Measurement Method by Integrating Photoelasticity and Spectrometry,” (Invited Speech) Proceedings of ATEM’11, Paper no. 11-203, pp. 1-10, Kobe, Japan, September 19-21, 2011.
    [27] P. C. Sung, W. C. Wang, C. H. Hwang, and G.T. Lai, “A Novel Stress Measurement Method by Integrating White Light Photoelsticity and Spectrometry,” 2012 IUTAM Symposium on Advances of Optical Methods in Experimental Mechanics, Paper no. G-10, pp. 1-11, Taipei, Taiwan, November3-6,2012.
    [28] A. Baldi, F. Bertolino and F. Ginesu, ”A Temporal Phase Unwrapping Algorithm for Photoelastic Stress Analysis, “Optics and Lasers in Engineering”, vol. 45, pp. 612-617, 2007.
    [29] J. H. Mathews and K. D. Fink, “Numerical Methods Using MATLAB,” 4th ed., Pearson Prentice Hall, New Jersey, U. S. A., 2004.
    [30] MATLAB Help Handbook, The MathWorks, Inc.
    [31] Website: www.andruss-peskin.com/mg/vmlinks.html
    [32] ASTM Test Designation B557M, “Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric),” Annual Book of ASTM Standards, vol. 02.02, pp. 578-594, Philadelphia, PA, U. S. A., 1984.
    [33] Website: http://www.taiwanglass.com.tw/
    [34] Website: http://www.itrc.org.tw/
    [35] Website: www.moritex.co.jp/
    [36] Website: www.techniquip.com
    [37] Website: http://www.kenkoglobal.com/
    [38] Website: http://www.onset-eo.com/
    [39] Website: http://www.aisys.com.tw/web/about/
    [40] Website: http://www.schneiderkreuznach.com/index_e.htm
    [41] Website: http://www.hamamatsu.com/
    [42] Website: http://www.instron.com.tw/
    [43] M. M. Frocht, “Photoelasticity,” vol.2, New York, Wiley, 1984, Ch.4.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE