簡易檢索 / 詳目顯示

研究生: 陳建明
Chen,Chien Ming
論文名稱: CMOS電容式DNA感測器
CMOS Capacitive DNA Sensors
指導教授: 盧向成
Lu,Shiang Cheng
口試委員: 王玉麟
劉承賢
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 指叉電極平板電極DNA電容式感測
外文關鍵詞: interdigitated electrode, planar electrode, DNA,, capacitive sensing.
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受惠於半導體工業的發展,電路設計是非常成熟的產業,將電路與微機電整合在同一塊晶片上,可以製作出快速以及高感測度的生醫感測器,靠不同的表面修飾方法,可以感測不同的細胞或是生物分子。
    本論文設計指叉式感測電極以及平板式感測電極,預期當生物分子被修飾在電極上方的氧化層(SiO_2)時,由於分子在電場作用下產生的極化效應,感測電極的電容值會有對應的變化,這個變化可以藉由感測電路讀出。另外我們設計第三種電極,在指叉電極下方放置一塊平板電極,藉由給定平板電極不同的電壓來量測DNA的電容值變化。
    本論文探討的重點在於,藉由使用指叉式電極以及平板式電極對於電容式DNA感測器的感測度探討電容式感測的機制。實驗上,我們完成了濃度從1 aM至1 pM的DNA感測,在這個範圍中電容式感測器的電容值變化了約40 %。


    Benefited from the development of the semiconductor industry, circuit design has become a very mature industry. With the integration of circuits and micro-electromechanical devices on the same chip, we can produce a rapid and high sensitivity biomedical sensor. Depending on the surface modification method, we can sense different cells or biological molecules.
    The chip design contains both the interdigitated electrodes and planar electrodes,. It is expected that when the DNA is modified on the oxide layer (SiO2) above the electrodes, the capacitance value of the sensing electrode will have a corresponding change due to the polarization effect produced by the molecules under the electric field. This change can be readout by the sensing circuit. In addition, a third planar electrode is placed under the interdigitated electrodes to apply different biases for monitoring the capacitive changes associated with the hybridized DNA.
    The focus of this work is to explore the mechanism of capacitive sensing of interdigitated and planar electrodes. In experiments, we performed DNA sensing at concentrations ranging from about 1 aM to 1 pM in which the capacitance varied by about 40 %.

    目錄 圖目錄 VIII 表目錄 XVIII 第一章緒論 1 1-1研究動機 1 1-2 CMOS-MEMS技術介紹 5 1-3文獻回顧 7 第二章電路架構與電容感測 13 2-1電路架構 13 2-2電容感測結構設計與模擬 21 第三章 生物實驗方法與感測機制 26 3-1生醫實驗之介紹 26 3-2電容感測機制分析 30 3-2-1電雙層電容 30 3-2-2 DNA極化造成的電容改變 32 第四章 晶片量測結果 40 4-1晶片檢視與封裝 40 4-1-1初始電容值 43 4-2生物實驗流程 44 4-3晶片一量測結果 45 4-3-1晶片一表面修飾量測結果 45 4-3-2晶片一的DNA H5 target量測 51 4-4晶片二量測結果 59 4-4-1晶片二表面修飾量測結果 59 4-4-2晶片二DNA target量測結果 64 4-4-3 溶液pH值量測結果 67 4-4-4晶片二加大電壓至45V後訊號消失 68 4-4-5不同PB濃度下的電容變化 70 第五章 結論與未來工作 71 參考文獻 72 附表 76

    參考文獻
    1. Y. Huang, C. Huang, T. Lin, C. Lin, L. Chen, P. Hsiao, B. Wu, H. Hsueh, B. Kuo, H. Tsai, H. Liao, Y. Juang, C. Wang and S. Lu, “A CMOS cantilever-based label-free DNA SoC with improved sensitivity for Hepatitis B virus detection,” IEEE Transactions on Biomedical Circuits and Systems, , vol. 7, no. 6, pp. 820-831, 2013.
    2. J. You, K. Jang, S. Lee, D. Bang , S. Haam, C. Choi, J. Park, S. Na, ” Label-free detection of zinc oxide nanowire using a graphene wrapping method,” Biosensors and Bioelectronics, vol. 68, pp. 481-486, 2015.
    J. Li, M. Xue, Z. Lu, Z. Zhang, C. Feng, and M. Chan, “A high-density conduction-based micro-DNA identification array fabricated with a CMOS compatible process,” IEEE Trans on Electron Devices, vol. 50, no. 10, pp. 2165-2170, 2003.
    3. A. Benvidi, N. Rajabzadeh, H. Zahedi,M. Mazloum-Ardakani, M. M. Heidari, L. Hosseinzadeh, “Simple and label-free detection of DNA hybridization on a modified graphene nanosheets electrode,” Talanta. vol. 137, pp. 80-86, 2015.
    4. X. Wang, F. Nan, J. Zhao, T. Yang, T. Ge, K. Jiao, “A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity,” Biosensors and Bioelectronics, vol. 64, pp. 386-391, 2015.
    5. L. Moreno-Hagelsieb, B. Foultier, G. Laurent, R. Pampin, J. Remacle, J. P. Raskin, and D. Flandre, “Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors,” Biosens. Bioelectron, vol. 22, no. 9-10, pp. 2199-2207, 2007.
    6. A. Numnuam, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, B. Wongkittisuksa, C. Limsakul, and P. Thavarungkul, “Capacitive biosensor for quantification of trace amounts of DNA,” Biosens. Bioelectron, vol. 24, no. 8, pp. 2559-2565, 2009.
    7. C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, C. Paulus, M. Schienle, M. Augustyniak, and R. Thewes, “Label-free DNA detection using a charge sensitive CMOS microarray sensor chip,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2956–2964, 2006.
    8. C. Stagni, C. Guiducci, L. Benini, B. Riccò, S. Carrara,C. Paulus, M. Schienle, and R. Thewes,” A fully electronic label-Free DNA sensor chip,” IEEE Sensors Journal, VOL. 7, pp577-585, 2007.
    9. J. Musayev, Y. Adlgüzel, H. Külah, S. Eminog ̌lu, and T. Akln, “ Label-free DNA detection using a charge sensitive CMOS microarray sensor chip,” IEEE Sensors Journal, VOL. 14, pp 1608-1614,2014.
    10. C. H. Lin, C. H. Hung, C. Y. Hsiao, H. C. Lin, F. H. Ko, and Y. S. Yang, “Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA,” Biosensors and Bioelectronics, vol. 24, pp. 3019-3024, 2009.
    11. P. W. Yen, C. W. Huang, Y. J. H Huang, M. C. Chen, H. H. Liao, S. S. Lu, C. T. Lin, “A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples,” Biosensors and Bioelectronics, VOL. 61, pp 112-118,2014.
    12. S. O. Kelley, J. K. Barton, , N. M. Jackson, L. D. McPherson, A. B. Potter, E. M. Spain, M. J. Allen, and M. G. Hill, “Orienting DNA Helices on gold using applied electric fields,” Langmuir, vo l4, no. 12, pp 6781-6784, 1998.
    13. J. Rivera-Gand´ıa, M. d. M. Maldonado, Y. D. L. Torre-Mel´endez, E. O. Ortiz-Quiles, N. M. Vargas-Barbosa, and C. R. Cabrera,” Electrochemical capacitance DNA Sensing at hairpin-modified Au electrodes,” Journal of Sensors, 2011.
    14. C. A. Betty, R. Lal, J. V. Yakhmi, and S. K. Kulshreshtha, “Time response and stability of porous silicon capacitive immunosensors,” Biosens. Bioelectron, vol. 22, no. 6, pp. 1027-1033, 2007.
    15. S. C. L. Michael, Y. C. Chen, and P. C. Huang, “5×5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine,” Biosensors and Bioelectronics, vol 26, pp. 1093-1097, 2010.
    16. C. Chai, J. Lee, and P. Takhistov, “Direct detection of the biological toxin in acidic environment by electrochemical impedimetric immunosensor,” Sensors, vol. 10, pp. 11414-11427, 2010.
    17. V. K. S. Hsiao, J. R. Waldeisen, Y. Zheng, P. F. Lloyd, T. J. Bunning, and T. J. Huang, “Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing,” J. Mater. Chem, vol. 17, pp. 4896-4901, 2007.
    18. J. A. Howarter and J. P. Youngblood, “Optimization of silica silanization by 3-aminopropyltriethoxysilane,” Langmuir, vol. 22,no. 26, pp. 11142-11147, 2006.
    19. W. Yang, J. E. Butler, J. N. Russell, Jr., and R. J. Hamers, “Interfacial electrical properties of DNA-modified diamond thin films: intrinsic response and hybridization-Induced field effects,” Langmuir, vol. 20, no. 16, pp. 6778-6787,2004.
    20. A. J. Bard, L. R. Faulkner, “Electrochemical method: Fundamentals and applications , 2nd Edition,”wiley,2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE