簡易檢索 / 詳目顯示

研究生: 邱貞瑛
CHIOU, JEN-YING
論文名稱: 低年級教師實施數學創思力導向的臆測教學之行動研究
A lower-Grade Teacher’s Action Research on Creativity-Directed Conjecturing Teaching in Mathematics
指導教授: 林碧珍
LIN, PI-JEN
口試委員: 蔡文煥
Tsai, Wen-Huan
陳正忠
Chen, Jeng-Chung
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所碩士在職專班
Mathematics & Science Education Master Inservice Program
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 151
中文關鍵詞: 數學創思力導向臆測教學低年級
外文關鍵詞: mathematical conjecturing teaching, mathematical creativity, lower-grade
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在探究數學創思力導向的任務設計與實踐中,國小低年級學童的創造性思考的歷程,以林碧珍(2019)提出的數學臆測教學模式進行一年級的「兩位數加法」單元及二年級的「加減關係與應用」單元。本研究採用行動研究紀錄25位同班級學童及教師歷經兩次創思力導向之臆測課程時,所遭遇的困難及解決問題的策略,佐以林碧珍(2020)臆測任務的數學創造力評量架構分析低年級學童的創思力表現。
    研究結果發現:(1)選定任務需考量單元是否容易產生規律性,方便低年級學生觀察數學關係。同構的造例素材需搭配課綱及教科書,以利低年級學生提出有依據且符合教學目標的猜想。(2)「增加猜想數量」能培養流暢性,分類及排序造例素材能訓練自我中心強烈的低年級學生協作的能力,透過觀察規律及清楚地說明猜想內容,能使學生提出有所依據的數學想法。(3)「增加猜想種類」能培養變通性,教學中為了產生多元的猜想,亦需增加造例數量及其正確性,才有機會產生多元種類的猜想。(4)「描述變動關係或變動量」能培養原創性,在提猜想及效化階段教導學生辨別猜想的類型,有助於數學程度較高的學生提出高原創性猜想。(5)「使用限制條件描述猜想」能培養精緻性,低年級學生提出具有數學關係的猜想時需要符合恆真性,透過檢驗及修正能訓練學生描述、闡明和概括思想的能力。
    關鍵字:數學創思力導向、臆測教學、低年級


    The purpose of this study was to explore the creative thinking process of lower grade elementary school students in the conjecturing task design and practiced of mathematics creativity-oriented, and used the mathematical conjecturing teaching model proposed by Lin(2019) to conduct the first-grade "two-digit addition" unit and the second-grade “Addition and Subtraction Relationships and Applications” unit. The study used action research to record the difficulties encountered and problem-solving strategies of 25 students and a teacher in the same class after two creativity-oriented conjecturing courses. The mathematical creativity assessment framework of Lin (2020) conjectures was used to analyze the creative performance of lower-grade students.
    Results showed that: (1) When selecting tasks, it was necessary to consider whether the unit was easy to produce regularity, so as to facilitate lower grade students to observe mathematical relationships. The isomorphic example-making materials needed to be matched with the syllabus and textbooks to facilitate lower grade students to make conjectures that were well-founded and consistented with the teaching objectives. (2) "Increasing the number of conjectures" could cultivate fluency. Classifying and sorting example materials could train the collaborative ability of low-level students with strong self-centeredness. By observing patterns and clearly explaining the content of conjectures, students could make suggestions with evidence. (3) "Increasing the types of conjectures" could cultivate flexibility. In order to generate diverse conjectures in teaching, it was also necessary to increase the number and accuracy of examples to have the opportunity to generate multiple types of conjectures. (4) "Describing the relationship or amount of change" could cultivate originality. It taught students to identify the types of conjectures in the stage of raising conjectures and validating them, which helped students with higher mathematics proficiency came up with highly original conjectures. (5) "Using restrictive conditions to describe conjectures" could cultivate sophistication. When lower-level students proposed conjectures with mathematical relationships, they needed to be true. Through testing and correction, students could train their ability to describe, clarified and summarized ideas.
    Keywords: mathematical conjecturing teaching, mathematical creativity, lower-grade

    第一章 緒論1 第一節 研究背景與動機1 第二節 研究目的與待答問題3 第三節 名詞釋義3 第四節 研究限制4 第二章 文獻探討5 第一節 數學創造力5 第二節 數學臆測任務與教學16 第三節 數學創思力導向的臆測教學23 第三章 研究方法37 第一節 行動研究法37 第二節 研究情境與研究對象38 第三節 研究架構與研究流程42 第四節 可能遭遇的問題與解決策略47 第五節 資料蒐集與分析50 第六節 教材單元分析52 第四章 研究結果59 第一節 教學活動設計59 第二節 培養流暢性之歷程69 第三節 培養變通性之歷程85 第四節 培養原創性之歷程98 第五節 培養精緻性之歷程110 第五章 結論與建議123 第一節 結果與討論123 第二節 相關研究建議128 參考文獻131 附錄141

    于富雲(2001)。從理論基礎探究合作學習的教學效益。教育資料與研究,38,22-28。
    吳明隆(2001)。教育行動研究。公教資訊季刊,4(3),25-42。
    吳清山(2002)。創意教學的重要理念與實施策略。臺灣教育,614,2-8。
    吳俊憲、黃政傑(2006)。合作學習的發展與前瞻。合作學習發展與實踐。台北市:五南。
    吳靜吉(2002)。華人創造力的研究和教育從分享開始。應用心理研究,(15),92-104。
    李國偉、黃文璋、楊德清、劉柏宏(2013)。教育部提升國民素養實施方案—數學素養研究計畫結案報告。臺北市:教育部。
    林素卿(2002)。教師行動研究導論。高雄市:復文。
    林福來(2007)。青少年數學論證「學習與教學」理論之研究:總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001),未出版。
    林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊, 23(1),83-110。doi:10.6173/CJSE.2015.2301.04
    林碧珍(2019a)。TIMSS 國際數學與科學教育成就趨勢調查國家報告。臺灣四年級學生數學成就及相關因素探討,166-170。臺北市 : 國立臺灣師範大學科學教育中心。
    林碧珍(2019b)。主編序。收錄於林碧珍(編著),數學臆測任務設計與實踐:整數、分數 與小數篇(頁v-viii)。臺北市:師大書苑。
    林碧珍(2020)。學生在臆測任務課堂表現的數學創造力評量。科學教育學刊。28(S),429-455。
    林碧珍(2021)。素養導向數學臆測教學模式之理論與實務。台北:師大書苑。
    林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐 ─以發展學童的數學論證為例。教科書研究第九卷第一期(2016年4月),109-134。
    林碧珍、陳姿靜(2021)。數學臆測教學模式教戰守則。台北:師大書苑。
    林劭帆(2018)。融入泰雅文化學校本位課程之臆測任務設 計與實踐之行動研究。國立清華大學碩士論文。
    林琨筌(2023)。數學臆測教學提升國小資優生數學創思力之行動研究。國立清華大學碩士論文。
    邱發忠(2010)。詞彙概念聯結測驗:創造潛能測量工具的發展。測驗學刊,57,295–324。
    周姝聿(2018)。一位體制外教師實施臆測教學造例階段的任務設計之行動研究。國立清華大學碩士論文。
    洪神佑(2017)。在數學臆測教學下一組國小六年級學生論證結構發展之研究。國立清華大學碩士論文。
    秦爾聰、劉致演、尤昭奇(2015)。探討七年級學生在以臆測為中心的數學探究教學脈絡下其數學素養展現情形。臺灣數學教師,36(1),1-16。
    孫思雨、鄭鴻琴(2017)。数学开放题:测量学生创造力的有效途径. 教育测量与评价(10), 56- 62。
    郭雅惠(2004)。「創造思考教學融入綜合活動學習領域」對國中生創意表現影響之研究。國立臺灣師範大學論文。
    張華城、洪文東(2004)。國小學童數學創造力與科學創造力之相關性及差異性研究。科學教育研究與發展季刊,37,25-50。
    張玉成(2013)。思考技巧與教學(第二版)。台北:心理出版社。
    張德銳、丁一顧、簡賢昌、高紅瑛、李建民、李俊達、林芳如、高敏麗、張淑娟、鄒小蘭、蔡美錦(2014)。教學行動研究:實務手冊與理論介紹(二版)。台北:高等教育。
    張桂惠(2016)。一位教師將數學臆測融入五年級教學之行動研究。國立清華大學碩士論文。
    陳龍安(2008)。創造思考教學的理論與實際(簡明版)。台北:心理出版社。
    陳佳明(2018)。一位國小五年級教師建立從造例到提出猜想臆測規範之行動研究。國立清華大學碩士論文。
    陳正曄(2020)。在數學臆測教學下學生數學創造力的展現。國立清華大學碩士論文。
    陳冠如(2023)。一位高年級教師實施創思力導向數學臆測教學之行動研究。國立清華大學碩士論文。
    國家教育研究院(2019)。十二年國民基本教育資賦優異相關之特殊需求領域課程綱要。查詢日期: 2023年4月1日,檢自https://reurl.cc/o0n5nv 。
    國家教育研究院(2021)。十二年國民基本教育課程綱要:總綱。查詢日期: 2023年4月1日,檢自https://reurl.cc/zAOL10 。
    游光昭、林坤誼、周家卉(2016)。英美日科技教科書分析及其對十二年國教之啟示。教科書研究,9(1),135-166。
    游淑美(2018)。一位體制外教師三年級數學臆測任務設計與實踐之行動研究。國立清華大學碩士論文。
    潘淑滿(2003)。質性研究-理論與運用。台北:心理出版社。
    劉宣谷(2015)。 數學創造力的文獻回顧與探究。臺灣數學教育期刊,2(1),23-40。doi: 10.6278/tjme.2050313.002
    謝定澄(2022)。六年級學生在臆測教學下數學創造力的表現。國立清華大學碩士論文。
    藍敏菁(2016)。一位國小三年級教師設計臆測任務融入數學教學之行動研究。國立清華大學碩士論文。
    Anderson, W. & Krathwohl, D. R. (Eds.)(2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s educational objectives. NY: Longamn.
    Barnes, M. (2000). ‘Magical’ moments in mathematics: Insights into the process of coming to know. For the Learning of Mathematics, 20(1), 33-43.
    Branch, J. L., & Oberg, D. (2004). Focus on inquiry: A teacher’s guide to implementing inquiry-based learning. Edmonton, AB: Alberta Learning.
    Bolden, D., Newton, D., & Harries, T. (2010). Preservice primary teachers’ conceptions of creativity in mathematics. Educational Studies in Mathematics, 73(2), 143–157.
    Baer, John. (2015). The Importance of Domain-Specific Expertise in Creativity. Roeper Review 37: 165–78.
    Carr, W., Kemmis, S.(1986) Becoming critical: education knowledge and action research. Londres: Falmer Press.
    Csikszentmihalyi, (2000)., International Handbook of Giftedness and talent. New York, NY: HarperCollins.
    Church, E. B., & Ravid, F. (2003). Setting the state for learning. Scholastic Parent & Child, 11, 38–42.
    Capobianco, B., Horowitz, R., Canuel-Browne, D., & Trimarchi, R. (2004). Action research. The science teacher, 71(3), 48.
    Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as tool to develop and identify creativity gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37–47.
    Cropley, A. (2006). Functional creativity: A socially-useful creativity concept. Baltic Journal of Psychology, 7(1), 26-38.
    Cañadas, M. C., Deulofeu, J., Figueiras, L, Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55-72.
    Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42-53). Dodrecht, The Netherlands: Kluwer Academic Publishers. doi: 10.1007/0-306-47203-1_3
    Elgrably, H., & Leikin, R. (2021). Creativity as a function of problem-solving expertise: Posing new problems through investigations. ZDM–Mathematics Education, 53(4), 891-904.
    Guba, E. G. (1990). The alternative paradigm dialog. In E. G. Cuba(Ed), The paradigm dialog (pp.17-27). London, UK: Sage.
    Holmes, E. E. (1995). New directions in elementary school mathematics: Interactive teaching and learning. Englewood Cliffs, NJ: Prentice-Hall.
    Haylock, D. (1997). Recognising mathematical creativity in schoolchildren. ZDM, 29(3), 68-74.
    Hensley, R. B. (2004). Curiosity and creativity as attributes of information literacy. Reference & User Services Quarterly, 44(1), 31–36.
    Hilmi, Y., & Usdiyana, D. (2020). An analysis of tenth grade students’ mathematical creative thinking ability in vector. Journal of Physics: Conference Series, 1521, 032036.
    Isaksen, S. G., & Parnes, S. J. (1985). Curriculum planning for creative thinking and problem solving. The Journal of Creative Behavior, 19 (1) ,1-29. doi:10.1002/j.2162-6057.1985. tb00400.x
    International Technology Education Association (2007). Standards for Technological Literacy: Content for the Study of Technology. T for All A. Project, 3rd Edition. Reston, Virginia. United States. ISBN: 1-887101-02-0.
    John-Steiner, V. (2000). Creative collaboration. Oxford: Oxford University Press.
    Jeon, K.-N., Moon, S. M., & French, B. (2011). Differential effects of divergent thinking, domain knowledge, and interest on creative performance in art and math. Creativity Research Journal, 23(1), 60-71. doi:10.1080/10400419.2011.545750
    Kent, B. (1997). The interconnectedness of Peirce’s diagrammatic thought. In N. H. Houser, D. Roberts, & J. Van Evra (Eds.), Studies in the logic of Charles Sanders Peirce (pp. 445-459). Indianapolis, IN: Indiana University Press.
    Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn Mathematics, National Academy Press, Washington, DC.
    Kabiri, M. S., & Smith, N. S. (2003). Turning traditional textbook problems into open- ended problems. Mathematics Teaching in the Middle School, 9(3),186-192.
    Kattou, M, Kontoyianni, K; Pitta-Pantazi, D and Christou, C (2011) Dose mathematical creativity differentiate mathematical ability? Journal of Physics: Conference Series, 1056-1065
    Kattou, Maria, Katerina Kontoyianni, Demetra Pitta-Pantazi, and Constantinos Christou. (2013). Connecting Mathematical Creativity to Mathematical Ability. ZDM—International Journal on Mathematics Education 45: 167–81.
    Karwowski, Maciej, Jan Dul, Jacek Gralewski, Emanuel Jauk, Dorota M. Jankowska, Aleksandra Gajda, Michael H. Chruszczewski, and Mathias Benedek. (2016). Is Creativity without Intelligence Possible? A Necessary Condition Analysis. Intelligence 57: 105–17.
    Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York: Cambridge University Press.
    Lewin, K. (1948). Resolving social conflicts. New York: Haper.
    Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Rotterdam, The Netherlands: Sense Publishers. doi:10.1163/9789087909352_010
    Leikin, R. (2013). Evaluating Mathematical Creativity: The Interplay between Multiplicity and Insight. Psychological Test and Assessment Modeling. 55: 385–400.
    Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state of the art.ZDM,45, 159–166.
    Leikin, R., & Elgrably, H. (2020). Problem posing through investigations for the development and evaluation of proof skills and creativity skills of prospective high school mathematics teachers. International Journal of Educational Research. https://doi.org/ 10.1016/j.ijer.2019.04.002.
    Levenson, E. (2011). Exploring collective mathematical creativity in elementary school. Journal of Creative Behavior, 45(3), 215–234.
    Levenson, E.(2013a).Tasks that may occasion mathematical creativity: teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269-291.
    Levenson, E.(2013b)Exploring the relationship between teachers’ values and their choice of tasks: the case of occasioning mathematical creativity. Educational Studies in Mathematics. 109 (3) , pp.469-489.
    Lin, F. L., Yang, K. L., Lee, K. H., Tabach, M. Styliandies, G. (2012). Principles of task design for conjecturing and proving. In G. Hanna & M. de Villers (Eds.) Proof and proving in mathematics education (pp.305-326). The 19th ICMI study. Springer.
    Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. The Journal of Mathematical Behavior, 31(1), 73-90. doi: 10.1016/j.jmathb.2011.11.001
    Lin. P. J., & Horng. S. Y. (2017, July). The conjecturing contributing to the group argumentation in primary classrooms. Paper presented at the 9th Classroom Teaching Research for All Students Conference, Dalian, China.
    Mason, J., & Johnston-Wilder, S. (2004). Fundamental constructs in mathematics education. London, UK: RoutledgeFalmer. doi: 10.4324/9780203465387
    Mason, J., Burton L., & Stacey K. (2010). Thinking mathematically (Second Edition). Harlow, England: Pearson Education Limited.
    Meyer, M. (2010). Abduction—A logical view of investigation and initiating processes of discovering mathematical coherences. Educational Studies in Mathematics, 74(2), 185-205. doi: 10.1007/s10649-010-9233-x
    Mann, E., Chamberlin, S. A., & Graefe, A. K. (2017). The prominence of affect in creativity: Expanding the conception of creativity in mathematical problem solving. In R. Leikin & B. Sriraman (Eds.), Creativity and giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 57–76). Cham, Switzerland: Springer.
    Neumann, C. J. (2007). Fostering creativity—A model for developing a culture of collective creativity in science. EMBO Reports, 8(3), 202–206.
    Perkins, D. N. (1986). Thinking frames. Educational Leadership, 43(8), 4-10.
    Punch, K. F., & Moriarty, B. (1997). Cooperative and competitive learning environments and their effects on behavior, self-efficacy, and achievement. The Alberta Journal of Educational Research, XLIII(2/3), 161-164.
    Richards, J. (1991). Mathematical discussion. In E. von Glaserfeld (Ed.), Radical constructivism in mathematics education (pp. 13-51). Dordrecht, The Netherlands: Kluwer.
    Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96.
    Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating Creativity in a culture of conformity. New York : The Free Press.
    Sriraman, B. (2003). Can mathematical discovery fill the existential void? The use of conjecture, proof and refutation in a high school classroom (feature article). Mathematics in School, 32(2), 2-6.
    Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education,17(1), 20-36.
    Shively, R. L. (2011). L2 pragmatic development in study abroad: A longitudinal study of Spanish service encounters. Journal of Pragmatics, 43(6), 1818-1835.
    Schoenfeld, A. H. (2014). What makes for powerful classrooms, and how can we support teachers in creating them? A story of research and practice, productively intertwined. Educational Researcher, 43(8), 404–412.
    Sullivan, P., Borcek, C., Walker, N., & Rennie, M. (2016). Exploring a structure for mathematics lessons that initiate learning by activating cognition on challenging tasks. The Journal of Mathematical Behavior, 41, 159–170.
    Torrance, E. P. (1974). Torrance tests of creative thinking. Princeton, NJ: Personal Press/Ginn and Company.
    Tubb, Adeline L., David H. Cropley, Rebecca L. Marrone, Tim Patston, and James C. Kaufman. (2020). The Development of Mathematical Creativity across High School: Increasing, Decreasing, or Both? Thinking Skills and Creativity 35.
    Utami S., Usodo B. and Pramudya I., (2019). Level of Students’ Creative Thinking in Solid Geometry. J. Phys. Conf. Ser. 1227 p. 012023.
    Usiskin, Z. (2000). The development into the mathematically talented. Journal of Secondary Gifted Education, 11(3), 152-162. doi:10.4219/jsge-2000-623
    Yore, L. D., Pimm, D., & Tuan, H. L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5, 559-589.

    QR CODE