研究生: |
詹木泉 Worasaung Klinthong |
---|---|
論文名稱: |
含胺類之中孔洞矽材用於捕獲二氧化碳 Carbon Dioxide Capture by Mesoporous Silica Containing Amines |
指導教授: | 談駿嵩 |
口試委員: |
吳榮宗
凌永健 汪上曉 王竹方 顧洋 區迪頤 蔣本基 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 141 |
中文關鍵詞: | 二氧化碳 、吸附 、胺類 、錠 、改質 、一鍋式 |
外文關鍵詞: | Carbon dioxide, Adsorption, Amine, Pellet, Grafting, One-pot |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Carbon dioxide (CO2) is a key global warming gas and its capture and sequestration is an important issue that has drawn global attention. Although the use of alkanolamines as chemical absorbents is currently one of the most viable means of capturing CO2, this technology has several drawbacks, including corrosion problem, foaming problem, large solvent makeup and amine loss in cycles due to degradation and evaporation. The application of silica materials is proposed to overcome these drawbacks, because their adsorption capacities toward CO2 can be enhanced by loading amines onto their internal surfaces. Accordingly, this research focuses on the synthesis and development of amine-containing silica adsorbents for CO2 capture. There are five parts as follows: (1) the application of supercritical propane (SC-propane) as the solvent for grafting 3-aminopropyltriethoxysilane (APS) onto mesoporous silica SBA-15, (2) the use of non-porous fumed silica as the amine support, (3) the preparation of as-synthesized APS-functionalized MCM-41 through direct synthesis method for CO2 capture, (4) the use of polyallylamine (PAA) and NaOH as a novel binder to pelletize amine-functionalized mesoporous silicas for CO2 capture, and (5) the preparation of PEI-containing mesoporous silica particles through one-pot synthesis for CO2 capture.
Firstly, SC-propane was found to be a promising solvent for grafting APS onto SBA-15 for CO2 capture. The influences of operating conditions in SC-propane for CO2 capture at different pressures (8.3 to 13.8 MPa), temperatures (85 to 120 °C), and periods of time (4 to 16 h) were evaluated. The results showed a reduction in pore characteristics and an increased amount of grafted APS with increased pressure and temperature after grafting. After grafting in SC-propane at 11.0 MPa and various temperatures for 16 h, 3 to 20% increase in the amount of grafted APS and 6 to 49% increase in the CO2 adsorption capacity over the toluene refluxing were observed. In addition, the time required for grafting in SC-propane could be reduced while maintaining higher nitrogen content and CO2 adsorption capacity compared with grafting in toluene refluxing.
Secondly, the non-porous fumed silica and SBA-15 were used as the support for tetraethylenepentamine (TEPA) impregnating and APS grafting. The TEPA-loaded silica adsorbents exhibited higher CO2 adsorption capacities but lower thermal stability than the APS-grafted silica adsorbents. The low cost and commercially available nonporous fumed silica was found to be an appropriate support for amine loading. The TEPA-loaded fumed silica possessed a CO2 adsorption capacity of 3.97 mmole/g (175 mg/g) and a CO2/N mole ratio of 0.37 under a 15% CO2/N2 mixed gas flow at 75 oC, which were higher than those of the TEPA-loaded SBA-15 due to the less CO2 diffusion hindrance. Besides, a high stability of TEPA on fumed silica in cyclic adsorption-desorption of CO2 over the TEPA loaded on SBA-15 was observed as well.
Thirdly, the as-synthesized amine-functionalized MCM-41 (as-APS/MCM) material was prepared through the direct synthesis by co-condensation of tetraethyl orthosilicate with APS at different molar ratios and a pH of approximately 13 for CO2 capture under various CO2 concentrations, temperatures and moistures. The CO2 adsorption capacity of as-APS/MCM was 73% higher than the APS-grafted calcined MCM-41 prepared by post-modification. Because the CO2 adsorption capacity of the as-APS/MCM was found to come mainly from the coated APS rather than the incorporated APS, the prehydrolysis of TEOS and post-treatment including template removal and APS neutralization were not required. Dynamic adsorption-desorption cycles revealed that the as-APS/MCM possessed high thermal stability for CO2 capture.
Forthly, a binder solution containing PAA and NaOH is proposed to construct pellets from amine-containing mesoporous silica powders, thereby providing active sites for CO2 capture in addition to reduction of pressure drop in a packed bed. Various powdered amine-containing adsorbents were prepared and pelletized, including APS-functionalized MCM-41 obtained through post-modification and direct synthesis, and polyethylenimine (PEI)-loaded MCM-41 obtained through impregnation. The pellets prepared after mixing the powdered adsorbents with an aqueous solution of 3 wt% PAA and 2 wt% NaOH exhibited the CO2 adsorption capacity slightly lower than the powdered adsorbent, a recovery of greater than 90% of the powdered adsorbents was observed, while their mechanical strength was over 0.4 MPa and durability could be over 90%. Moreover, the pelletized adsorbents possessed the high thermal stability in cyclic adsorption-desorption. As a result, the proposed binder formula can be used to provide pelletized amine-containing adsorbents for CO2 capture from power plants.
Finally, the PEI-containing mesoporous silica particles (PEI-MSP) were prepared through a simple one-pot synthesis for CO2 capture. The prepared PEI-MSP possessed the CO2 adsorption capacity under 15% CO2 in N2 mixed gases at 95 oC up to 3.34 mmol/g (147 mg/g). The CO2 adsorption capacity of PEI-MSP was 10% greater than that of PEI-loaded SBA-15 (PEI/SBA) prepared through impregnation. For practical use, the binder solution featuring 3% PAA and 2% NaOH was applied to pelletize both PEI-MSP and PEI/SBA. Both pelletized adsorbents possessed adequate mechanical properties - mechanical strength of greater than 0.5 MPa and durability of 100% - that fit the criteria for practical use. The pelletized PEI-MSP demonstrated the greater CO2 adsorption capacity and recovery than the pelletized PEI/SBA since external PEI of PEI-MSP facilitated the access of CO2 to amine active sites after pelletized. Dynamic adsorption-desorption cycles of both powdered and pelletized PEI-MSP revealed that they possessed high thermal stability. Therefore, this alternative one-pot synthesis is promising for the preparation of PEI-containing mesoporous silica materials regarding as appropriate adsorbents for CO2 capture when a temperature swing adsorption technology is applied.
References
Aaron, D. and Tsouris, C. “Separation of CO2 from Flue Gas: A Review” Sep. Sci. Technol., 40, 321-348, 2005.
Abanades, J. C. and Alvarez, D. “Conversion Limits in the Reaction of CO2 with Lime” Energy Fuels, 17, 308-315, 2003.
Alvarez, D. and Abanades, J. C. “Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2” Ind. Eng. Chem. Res., 44, 5608-5615, 2005a.
Alvarez, D. and Abanades, J. C. “Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles” Energy Fuels, 19, 270-278, 2005b.
Al-Widyan, M. I. and Al-Jalil, H. F. “Stress-Density Relationship and Energy Requirement of Compressed Only Cake” Appl. Eng. Agric. 17, 749-753, 2001.
An, H.; Feng, B. and Su, S. “CO2¬ Captured by Electrothermal Swing Adsorption with Activated Carbon Fibre Materials” Int. J. Greenh. Gas Control, 5, 16-25, 2011.
Arenillas, A.; Smith, K. M.; Drage, T. C. and Snape, C. E. “CO2 Capture using Some Fly ash-derived Carbon Materials” Fuel, 84, 2204-2210, 2005.
Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M. and Yaghi O. M. “Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties” J. Am. Chem. Soc., 131, 3875-3877, 2009.
Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M. and Yaghi O. M. “High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture” Science, 319, 939-943, 2008.
Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B. and Schlenker, J. L. “A New Family of Mesoporous Molecular Sieve Prepared with Liquid Crystal Templates” J. Am. Chem. Soc., 114, 10834-10843, 1992.
Belmabkhout, Y.; Heymans, N.; Weireld, G. D. and Sayari, A. “Simultaneous Adsorption of H2S and CO2 on Triamine-grafted Pore-expanded Mesoporous MCM-41 Silica” Energy Fuels, 25, 1310-1315, 2011a.
Belmabkhout, Y. and Sayari, A. “Isothermal versus Non-isothermal Adsorption-Desorption Cycling of Triamine-grafted Pore-expanded MCM-41 Mesoporous Silica for CO¬¬2 Capture from Flue Gas” Energy Fuels, 24, 5273-5280, 2010.
Belmabkhout, Y.; Serna-Guerrero, R. and Sayari, A. “Adsorption of CO2-Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification” Ind. Eng. Chem. Res., 49, 359-365, 2010a.
Belmabkhout, Y.; Serna-Guerrero, R. and Sayari, A. “Amine-bearing Mesoporous Silica for CO2 Removal from Dry and Humid Air” Chem. Eng. Sci., 65, 3695-3698, 2010b.
Belmabkhout, Y.; Serna-Guerrero, R. and Sayari, A. “Adsorption of CO2-Containing Gas Mixtures over Amine-bearing Pore-expanded MCM-41 Silica: Application for CO2 Separation” Adsorption, 17, 395-401, 2011b.
Belmabkhout, Y.; Weireld, G. D. and Sayari, A. “Amine-Bearing Mesoporous Silica for CO2 and H2S Removal from Natural Gas and Biogas” Langmuir, 25, 13275-13278, 2009.
Bollini, P.; Choi, S.; Drese, J. H. and Jones, C. W. “Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO2 Capture” 25, 2416-2425, 2011.
Britt, D.; Furukawa, H.; Wang, H. B.; Glover, T. G. and Yaghi, O. M. “Highly Efficient Separatin of Carbon Dioxide by Metal-organic Framework Replete with Open Metal Sites” PNAS, 106, 20637-20640, 2009.
Calleja, G.; Sanz, R.; Arencibia, A. and Sanz-Pérez, E. S. “Influence of Drying Conditions on Amine-Functionalized SBA-15 as Adsorbent of CO2” Top. Catal., 54, 135-145, 2011.
Caplow, M. “Kinetics of Carbamate Formation and Breakdown” J. Am. Chem. Soc., 90, 6795-6803, 1968.
Chaikittisilp, W.; Didas, S. A.; Kim, H. and Jones, C. W. “Vapor-Phase Transport as a Novel Route to Hyperbranced Polyamine-Oxide Hybrid Materials” Chem. Mater. 25, 613-622, 2013.
Chaikittishlp, W.; Khunsupat, R.; Chen, T. T. and Jones, C. W. “Poly(allylamine)-Mesoporous Silica Composite Materials for CO2 Capture from Simulated Flue Gas or Ambient Air” Ind. Eng. Chem. Res., 50, 14203-14210, 2011.
Chang, F. Y.; Chao, K. J.; Cheng, H. H. and Tan, C. S. “Adsorption of CO2 onto Amine-grafted Mesoporous Silicas” Sep. Purif. Technol., 70, 87-95, 2009.
Chang, A. C. C.; Chuang, S. C. C.; Gray, M. and Soong, Y. “In-Situ Infrared Study of CO¬2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilane” Energy Fuels, 17, 468-473, 2003.
Chao, K. J.; Klinthong, W. and Tan, C. S. “CO2 Adsorption Ability and Thermal Stability of Amines Supported on Mesoporous Silica SBA-15 and Fumed Silica” J. Chin. Chem. Soc., 60, 735-744, 2013.
Che, S.; Garcia-Bennett, A. E.; Yokoi, T.; Sakamoto, K.; Kunieda, H.; Terasaki, O. and Tatsumi, T. “A Novel Anionic Surfactant Templating Route for Synthesizing Mesoporous Silica with Unique Structure” Nature Mater., 2, 801-805, 2003.
Chen, C.; Son, W. J.; You, K. S.; Ahn, J. W. and Ahn, W. S. “Carbon Dioxide Capture Using Amine-impregnated HMS Having Textural Mesoporosity” Chem. Eng. J., 161, 46-52, 2010.
Chester, A. W. and Derouane, E. G. Eds. Zeolite Characterization and Catalysis: A Tutorial; Springer: New York, 2009.
Chew, T. L.; Ahmad, A. L. and Bhatia, S. “Ordered Mesoporous silica (OMS) as an Adsorbent and Membrane for Separation of Carbon Dioxide (CO¬¬2)” Adv. Colloid Interface Sci. 153, 43-57, 2010.
Chiu, C. Y.; Chiang, A. S. T. and Chao, K. J. “Mesoporous silica powders and films-pore size characterization by krypton adsorption” Microporous Mesoporous Mater., 91, 244-253, 2006.
Chong, A. S. M. and Zhao, X. S. “Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials” J. Phys. Chem. B, 107, 12650-12657, 2003.
Cinke, M.; Li, J.; Bauschlicher Jr., C.W.; Ricca, A. and Meyyappan, M. “CO2 Adsorption in Single-walled Carbon Nanotubes” Chem. Phys. Lett. 376, 761-766, 2003.
Coriani, S.; Halkier, A.; Rizzo, A. and Ruud, K. “On the Molecular Electric Quadrupole Moment and the Electric-field-gradientinduced Birefringence of CO2 and CS2” Chem. Phys. Lett., 326, 269-276, 2000.
D’Alessandro, D. M., Smit, B. and Long, J. R. “Carbon Dioxide Capture: Prospects for New Materials” Angew. Chem. Int. Ed., 49, 6058-6082, 2010.
Danckwerts, P. V. “The Reaction of CO2 with Ethanolamines” Chem. Eng. Sci., 34, 443-446, 1976.
de Boer, J. H.; Linsen, B. G. and Osinga, T. J. “Studies on Pore Systems in Catalysts: VI. The Universal t curve” J. Catal., 4, 643-648, 1965.
de Gooijer, J. M.; de Hann, A.; Scheltus, M.; Schmieder-van der Vondervoort, L. and Koning, C. “Modification of Maleic Anhydrid Grafted Polyethylene with 1,4-diaminobutane in near Critical Propane” Polymer, 40, 6493-6498, 1999.
Donaldson, T. L. and Nguyen, Y. N. “Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes” Ind. Eng. Chem. Fundam., 19, 260-266, 1980.
Drese, J. H.; Choi, S.; Lively, R. P.; Koros, W. J.; Fauth, D. J.; Gray, M. L. and Jones, C. W. “Synthesis-Structure-Property Relationships for Hyperbranched Aminosilica CO2 Adsorbents” Adv. Funct. Mater. 19, 3821-3832, 2009.
Ebner, A. D.; Gray, M. L.; Chisholm, N. G.; Black, Q. T.; Mumford, D. D.; Nicholson, M. A. and Ritter, J. A. “Suitability of a Solid Amine Sorbent for CO2 Capture by Pressure Swing Adsorption” Ind. Eng. Chem. Res., 50, 5634-5641, 2011.
Filburn, T.; Helble, J. J. and Weiss, R. A. “Development of Supported Ethanolamines and Modified Ethanolamines for CO2 Capture” Ind. Eng. Chem. Res., 44, 1542-1546, 2005.
Fisher, J. C.; Tanthana, J. and Chuang, S. S. C. “Oxide-Supported Tetraethylenepentamine for CO2 Capture” Environ. Prog. Sustainable Energy, 28, 589-598, 2009.
Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K. and Rao, C. N. R. “Uptake of H2 and CO2 by Graphene” J. Phys. Chem. C, 112, 15704-15707, 2008.
Global CCS Institute, The global status of CCS: 2011, Canberra, Australia, 2011.
Goeppert, A.; Czaun, M.; May, R. B.; Prakash, G. K. S.; Olah G. A. and Narayanan, S. R. “Carbon Dioxide Capture from the Air using a Polyamine Based Regenerable Solid Sorbent” J. Am. Chem. Soc., 133, 20164-20167, 2011.
Goeppert, A.; Meth, S.; Prakash, G. K. S.; and Olah, G. A. “Nanostructured Silica as a Support for Regenerable High-Capacity Organoamine-Based CO2 Adsorbents” Energy Environ. Sci. 3, 1949-1960, 2010.
Grande, C. A.; Ribeiro, R. P. P. L. and Rodrigues, A. E. “CO¬2 Capture from NGCC Power Stations Using Electric Adsorption (ESA)” Energy Fuels, 23, 2797-2803, 2009.
Grande, C. A. and Rodrigues, A. E. “Electric Swing Adsorption for CO¬2 Removal from Flue Gases” Int. J. Greenh. Gas Control, 2, 194-202, 2008.
Gray, M. L.; Hoffman, J. S.; Hreha, D. C.; Fauth, D. J.; Hedges, S. W.; Champagne, K. J. and Pennline, H. W. “Parametric Study of Solid Amine Sorbents for the Capture of Carbon Dioxide” Energy Fuels, 23, 4840-4844, 2009.
Gregg, S. J. and Sing, K. S. W. “Adsorption, Surface Area, and Porosity” 2nd ed., Academic Press Inc., London, 1982.
Guerrero, R. S.; Belmabkhout, Y.; Sayari, A. “Modeling CO2 Adsorption on Amine-Functionalized Mesoporous Silica. 1. A Semi-Empirical Equilibrium Model” Chem. Eng. J., 161, 173-181, 2010.
Gupta, H. and Fan, L. S. “Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas” J. Ind. Eng. Chem., 41, 4035-4042, 2002.
Hao, S., Hong, C., Xiao, Q., Zhong, Y. and Zhu, W. “One-pot Synthesis and CO2 Adsorption Properties of Ordered Mesoporous SBA-15 Materials Functionalized with APTMS” J. Phys. Chem. C, 115, 12873-12882, 2011.
Harlick, P. J. E. and Sayari, A. “Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption” Ind. Eng. Chem. Res., 45, 3248-3255, 2006.
Harlick, P. J. E. and Sayari, A. “Application of Pore-expanded Mesoporous silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance” Ind. Eng. Chem. Res., 46, 446-458, 2007.
Harlick, P. J. E. and Tezel, F. H. “An experimental adsorbent creening study for CO2 removal from N2” Microporous Mesoporous Mater., 76, 71-79, 2004.
Hartono, S. B.; Qiao, S. Z.; Jack, K.; Ladewig, B. P.; Hao, Z. and Lu, G. Q. “Improving Adsorbent Properties of Cage-Like Ordered Amine Functionalized Mesoporous Silica with very Large Pore for Bioadsorption” Langmuir, 25, 6413-6424, 2009.
Heydari-Gorji, A. and Sayari, A. “CO2 Capture on Polyethylenimine-impregnated Hydrophobic Mesoporous Dilica: Experimental and Kinetic Modelling” Chem. Eng. J., 173, 72-79, 2011.
Hicks, J. C.; Drese, J. D.; Fauth, D. J.; Gray, M. L.; Qi, G. and Jones, C. W. “Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly” J. Am. Chem. Soc., 130, 2902-2903, 2008.
Hitzler, M. G.; Smail, F. R.; Ross, S. K. and Poliakoff, M. “Selective Catalytic Hydrogenation of Organic Compounds in Supercritical Fluids as a Continuous Process” Org. Process Res. Dev., 2, 137-146, 1998.
Hiyoshi, N.; Yogo, K. and Yashima, T. “Adsorption of Carbon Dioxide on Modified Mesoporous Materials in the Presence of Water Vapor” Stud. Surf. Sci. Catal., 154, 2995-3002, 2004.
Hiyoshi, N.; Yogo, K. and Yashima, T. “Adsorption Characteristics of Carbon Dioxide on Organically Functionalized SBA-15” Microporous Mesoporous Mater., 84, 357-365, 2005.
Hsu, S. C.; Lu, C.; Su, F.; Zeng, W. and Chen, W. “Thermodynamics and Regeneration Studies of CO2 Adsorption on Multiwalled Carbon Nanotubes” Chem. Eng. Sci., 65, 1354-1361, 2010.
Huang, C. H.; Chang, K. P.; Yu, C. T.; Chiang, P. C. and Wang, C. F. “Development of High-Temperature CO¬2 Sorbents Made of CaO-based Mesoporous Silica” Chem. Eng. J., 161, 129-135, 2010.
Huang, C. H.; Worasaung, K. and Tan, C. S. “SBA-15 Grafted with 3-Aminopropyl Triethoxysilane in Supercritical Propane for CO2 Capture” J. Supercrit. Fluids, 77, 117-126, 2013.
Huang, H. Y.; Yang, R. T.; Chinn, D. and Munson, C. L. “Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas” Ind. Eng. Chem. Res., 42, 2427-2433, 2003.
Huo, Q.; Margolese, D. I.; Ciesia, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F. and Stucky, G. D. “Generalized Synthesis of Periodic Surfactant/inorganic Composite Materials” Nature, 368, 317-321, 1994.
IEA, Clean Energy Progress Report, Paris, France, 2011.
Inagaki, S.; Fukushima, Y. and Kuroda, K. “Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate” J. Chem. Soc., Chem. Commum., 680-682, 1993.
Ioganathan, S.; Tikmani, M. and Ghoshal, A. K. “A Novel Pore Expanded MCM-41 for CO2 Capture: Synthesis and Characterization” Langmuir, 29, 3491-3499, 2013.
Iwan, A.; Stephenson, H.; Ketchie, W. C. and Lapkin, A. A. “High Temperature Sequestration of CO2 Using Lithium Zirconates” Chem. Eng. J., 146, 249-258, 2009.
Jadhav, P. D.; Chatti, R. V.; Biniwale, R. B.; Labhsetwar, N. K.; Devotta, S. and Rayalu, S. S. “Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures” Energy Fuels, 21, 3555-3559, 2007.
Jiang, B.; Kish, V.; Fauth, D. J.; Gray, M. L.; Pennline, H. W. and Li, B. “Performance of Amine-multilayered Solid Sorbents for CO2 Removal: Effect of Fabrication Variables” Int. J. Greenh. Gas Control 5, 1170-1175, 2011.
Jing, Y.; Wei, L.; Wang, Y. and Yu, Y. “Synthesis, Characterization and CO2 capture of mesoporous SBA-15 adsorbents functionalized with melamine-based and acrylate-based amine dendrimers.” Microporous Mesoporous Mater. 183, 124-133, 2014.
Jones, C. W. “CO2 Capture from Dilute Gases as a Component of Modern Global Carbon Management” Annu. Rev. Chem. Biomol. Eng., 2, 31-52, 2011.
Kato, M.; Yoshikawa, S. and Nakagawa, K. “Carbon Dioxide Absorption by Lithium Orthosilicate in a Wide range of Temperature and Carbon Dioxide Concentrations” J. Mater. Sci. Lett., 21, 485-487, 2002.
Kawatra, S. K. and Ripke, S. J. “Laboratory studies for improving green ball strength in bentonite-bonded magnetite concentrate pellets.” Int. J. Miner. Process. 72, 429-441, 2003.
Khatri, R. A.; Chuang, S. S. C.; Soong, Y. and Gray, M. “Carbon Dioxide Capture by Diamine-grafted SBA-15: A Combined Fourier Transform Infrared and Mass Spectrometry Study” Ind. Eng. Chem. Res., 44, 3702-3708, 2005.
Khatri, R. A.; Chuang, S. S. C.; Soong, Y. and Gray, M. “Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture” Energy Fuels 20, 1514-1520, 2006.
Kim, S.; Ida, J.; Guliants, V. V. and Lin, J. Y. S. “Tailoring pore properties of MCM-48 silica for selective adsorption of CO2” J. Phys. Chem. B, 109, 6287-6293, 2005.
Kim, S. N.; Son, W. J.; Choi, J. S. and Ahn, W. S. “CO2 Adsorption Using Amine-Functionalized Mesoporous Silica Prepared via Anionic Surfactant-mediated Synthesis” Microporous Mesoporous Mater., 115, 497-503, 2008.
Klinthong, W.; Chao, K. J. and Tan, C. S. “CO2 Capture by As-Synthesized Amine-Functionalized MCM-41 Prepared through Direct Synthesis under Basic Condition” Ind. Eng. Chem. Res. 52, 9834-9842, 2013.
Knowles, G. P.; Delaney, S. W. and Chaffee, A. L. “Diethylenetriamine[propyl(silyl)]- Functionalized (DT) Mesoporous Silicas as CO2 Adsorbents” Ind. Eng. Chem. Res., 45, 2626-2633, 2006.
Knowles, G. P., Graham, J. V., Delaney, S. W. and Chaffee, A. L. “Aminopropyl- Functionalized Mesoporous Silicas as CO¬2¬ Adsorbents” Fuel Process. Technol. 86, 1435-1448, 2005.
Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism” Nature, 359, 710-712, 1992.
Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R; Makal, T. A.; Young, M. D.; Yuan, D.; Zhao, D.; Zhuang, W. and Zhou, H. C. “Potential Applications of Metal-organic Frameworks” Coord. Chem. Rev., 253, 3042-3066, 2009.
Lai, C. C. and Tan, C. S. “Measurement of Molecular Diffusion Coefficients in Supercritical Carbon Dioxide Using a Coated Capillary Column” Ind. Eng. Chem. Res. 34, 674-680, 1995.
Leal, O.; Bolívar, C.; Ovalles, C.; García, J. J. and Espidel, Y. “Reversible Adsorption of Carbon Dioxide on Amine Surface-bonded Silica Gel” Inorg. Chim. Acta, 240, 183-189, 1995.
Lee, S.; Filburn, T. P.; Gray, M.; Park, J. W. and Song, H. J. “Screeening Test of Solid Amine Sorbents for CO2 Capture” Ind. Eng. Chem. Res., 47, 7419-7423, 2008.
Lestriez, B.; Bahri, S.; Sandu, I.; Roué, L. and Guyomard, D. “On the Binding Mechanism of CMC in Si Negative Electrodes for Li-ion Batteries.” Electrochem. Commun., 9, 2801-2806, 2007.
Li, W.; Choi, S.; Drese, J. H.; Hornbostel, M.; Krishnan, G.; Eisenberger, P. M.; Jones, C. W. “Steam-stripping for Regeneration of Supported Amine-based CO2 Adsorbents” ChemSusChem, 3, 899-903, 2010.
Li, B.; Jiang, B.; Fauth, D. J.; Gray, M. L.; Pennline, H. W. and Richards, G. A. “Innovative Nano-layered Solid Sorbents for CO¬2 Capture” Chem. Commun., 47, 1719-1721, 2011.
Li, J. R.; Kuppler, R. J. and Zhou, H. C. “Selective Gas Adsorption and Separation in Metal-Organic Frameworks” Chem. Soc. Rev., 38, 1477-1504, 2009.
Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K., Balbuena, P. B. and Zhou, H. C. “Carbon Dioxide Capture-related Gas Adsorption and Separation in Metal-organic Frameworks” Coord. Chem. Rev., 255, 1791-1823, 2011.
Li, G.; Xiao, P.; Webley, P.; Zhang, J.; Singh, R. and Marshall, M. “Capture of CO2 from High Humidity Flue Gas by Vacuum Swing Adsorption with Zeolite 13X” Adsorption, 14, 415-422, 2008.
Liang, Z.; Fadhel, B.; Schneider, C. J. and Chaffee, A. L. “Stepwise Growth of Melamine-Based Dendrimers into Mesopores and their CO2 Adsorption Properties” Micropor. Mesopor. Mater., 111, 536-543, 2008.
Liang, Z.; Fadhel, B.; Schneider, C. J. and Chaffee, A. L. “Adsorption of CO2 on Mesocellular Siliceous Foam Iteratively Functionalized with Dendimers” Adsorption, 15, 429-437, 2009.
Littel, R. J.; Versteeg, G. F. and Swaaij W. P. M. V. “Kinetics of CO2 with Primary and Secondary Amines in Aqueous Solutions - II. Influence of Temperature on Zwitterion Formation and Deprotonation Rates” Chem. Eng. Sci., 47, 2037-2045, 1992.
Liu, X.; Li, J.; Zhou, L.; Huang, D. and Zhou, Y. “Adsorption of CO2, CH4, and N2 on Ordered Mesoporous Silica Molecular Sieve” Chem. Phys. Lett., 415, 198-201, 2005.
Ma, X.; Wang, X. and Song, C. “Molecular Basket Sorbents for Separation of CO2 and H2S from Various Gas Streams” J. Am. Chem. Soc., 131, 5777-5783, 2009.
Macario, A.; Katovic, A.; Giordano, G.; Iucolano, F. and Caputo, D. “Synthesis of Mesoporous Materials for Carbon Dioxide Sequestration” Microporous Mesoporous Mater., 81, 139-147, 2005.
Manovic, V. and Anthony, E. J. “Steam Reactivation of Spent CaO-Based Sorbent for Multiple CO2 Capture Cycles” Environ. Sci. Technol., 41, 1420-1425, 2007.
Manovic, V. and Anthony, E. J. “Parametric Study on the CO2 Capture Capacity of CaO-Based Sorbents in Looping Cycles” Energy Fuels 22, 1851-1857, 2008.
Maroto-Valer, M. M.; Lu, Z.; Zhang, Y. and Tang, Z. “Sorbents for CO2 Capture from High Carbon Fly Ashes” Waste Manage., 28, 2320-2328, 2008.
Maroto-Valer, M. M.; Tang, Z. and Zhang, Y. “CO2 Capture by Activated and Impregnated Anthracites” Fuel Process. Technol., 86, 1487-1502, 2005.
Meth, S.; Geoppert, A.; Prakashi, G. K. S. and Olah, G. A. “Silica Nanoparticles as Supports for Regenerable CO2 Sorbents” Energy Fuels, 26, 3082-3090, 2012.
Millward, A. R. and Yaghi, O. M. “Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature” J. Am. Chem. Soc., 127, 17998-17999, 2005.
Nguyen, T. P. B.; Lee, J. W.; Shim, W.G. and Moon, H. “Synthesis of Functionalized SBA-15 with Ordered Large Pore Size and its Adsorption Properties of BSA” Micropore. Mesopore. Mater., 110, 560-569, 2008.
Olajire, A. A. “CO2 Capture and Separation Technologies for End-of-pipe Applications - A review” Energy, 35, 2610-2628, 2010.
Osei-Prempeh, G.; Lehmerm, H. J.; Rankin, S. E. and Knutson, B. L. “Direct Synthesis and Accessibility of Amine-functionalized Mesoporous Silica Template Using Fluorinated Surfactants” Ind. Eng. Chem. Res., 50, 5510-5522, 2011.
Plaza, M. G.; García, S.; Rubiera, F.; Pis, J. J. and Pevida, C. “Post-combustion CO2 Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies” Chem. Eng. J., 163, 41-47, 2010.
Plaza, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F. and Pis, J. J. “CO2 Capture by Adsorption with Nitrogen Enriched Carbons” Fuel, 86, 2204-2212, 2007.
Plaza, M. G.; Pevida, C.; Arias, B.; Fermoso, J.; Arenillas, A.; Rubiera, F. and Pis, J. J. “Application of Thermogravimetric Analysis to the Evaluation of Aminated Solid Sorbents for CO2 Capture” J. Therm. Anal. Calorim., 92, 601-606, 2008.
Qi, G.; Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A. H. A.; Li, W.; Jones, C. W. and Giannelis, E. P. “High Efficiency Nanocomposite Sorbents for CO2 Capture Based on Amine-functionalized Mesoporous Capsules” Energy Environ. Sci., 4, 444-452, 2011.
Ribeiro, R. P. P. L.; Grande, C. A. and Rodrigues, A. E. “Adsorption of Water Vapor on Carbon Molecular Sieve: Thermal and Electrothermal Regenereation Study” Ind. Eng. Chem. Res., 50, 2144-2156, 2011.
Ruthven, D. M. Principles of Adsorption and Adsorption Processes; Wiley-Interscience: New York, 1984.
Saha, D. and Deng, S. “Adsorption Equilibrium and Kinetics of CO2, CH4, N2O, and NH3 on Ordered Mesoporous Carbon” J. Colloid Interface Sci., 345, 402-409, 2010.
Saman, N.; Johari, K. and Mat, H. “Effects of Synthesis Parameters Towards Morphological Properties of Silica Xerogels” Asian J. Applied Sci. 5, 247-251, 2012.
Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P. and Gupta, R. “Post-Combution CO2 capture Using Solid Sorbents: A Review” Ind. Eng. Chem. Res., 51, 1438-1463, 2012.
Sanz, R.; Calleja, G.; Arencibia, A. and Sanz-Pérez, E.S. “Amino Functionalized Mesostructured SBA-15 Silica for CO2 Capture: Exploring the Relation between the Adsorption Capacity and the Distribution of Amino Groups by TEM” Microporous Mesoporous Mater. 158, 309-317, 2012.
Sanz-Pérez, E. S.; Olivares-Marín, M.; Arencibia, A.; Sanz, R.; Calleja, G. and Maroto-Valer, M. M. “CO2 Adsorption Performance of Amino-Functionalized SBA-15 under Post-Combustion Conditions” Int. J. Greenh. Gas Control, 17, 366-375, 2013.
Sayari, A. and Belmabkhout, Y. “Stabilization of Amine-Containing CO2 Adsorbents: Dramatic effect of Water Vapor” J. Am. Chem. Soc., 132, 6312-6314, 2010.
Sayari, A.; Belmabkhout, Y. and Da’na, E. “CO2 Deactivation of Supporterd Amines: Does the Nature of Amine Matter?.” Langmuir, 28, 4241-4247, 2012.
Sayari, A.; Belmabkhout, Y. and Serna-Guerrero, R. “Flue Gas Treatment via CO2 Adsorption” Chem. Eng. J., 171, 760-774, 2011.
Sayari, A.; Heydari-Gorji, A. and Yang, Y. “CO2-Induced Degradation of Amine-Containing Adsorbents: Reaction Products and Pathways” J. Am. Chem. Soc., 134, 13834-13842, 2012.
Schladt, M. J.; Filburn, T. P. and Helble, J. J. “Supported Amine Sorbents Under Temperature Swing Absorption for CO2 and Moisture Capture” Ind. Eng. Chem. Res., 46, 1590-1597, 2007.
Serna-Guerrero, R. and Sayari, A. “Modeling Adsorption of CO2 on Amine-Functionalized Mesoporous Silica. 2: Kinetics and Breakthrough Curves” Chem. Eng. J., 161, 182-190, 2010.
Serna-Guerrero, R., Belmabkhout, Y. and Sayari, A. “Further Investigations of CO2 Capture Using Triamine-grafted Pore-expanded Mesoporous Silica” Chem. Eng. J. 158, 513-519, 2010a.
Serna-Guerrero, R.; Belmabkhout, Y. and Sayari, A. “Influence of Regeneration Conditions on the Cyclic Performance of Amine-grafted Mesoporous for CO¬¬2 Capture: An Experimental and Statistical study” Chem. Eng. Sci., 65, 4166-4172, 2010b.
Serna-Guerrero, R.; Belmabkhout, Y. and Sayari, A. “Modeling CO¬2 Adsorption on Amine-Functionalized Mesoporous Silica: 1. A Semi-empirical Equilibrium Model” Chem. Eng. J., 161, 173-181, 2010c.
Serna-Guerrero, R.; Belmabkhout, Y. and Sayari, A. “Triamine-grafted Pore-expanded Mesoporous Silica for CO2 Capture: Effect of Moisture and Adsorbent Regeneration Strategies” Adsorption, 16, 567-575, 2010d.
Sharma, P.; Seong, J. K.; Jung, Y. H.; Choi, S. H.; Park, S. D.; Yoon, Y. I. and Baek, I. H. “Amine Modified and Pelletized Mesoporous Materials: Synthesis, Textural-Mechanical Characterization and Application in Adsorptive Separation of Carbon Dioxide” Powder Technol. 219, 86-98, 2012.
Shenderovich, I. G.; Buntkowsky, G.; Schreiber, A.; Gedat, E.; Sharif, S.; Albrecht, J.; Golubev, N. S.; Findenegg, G. H. and Limbach, H. H. “Pyridine-15N - A mobile NMR Sensor for Surface Acidity and Surface Defects of Mesoporous Silica” J. Phys. Chem. B, 107, 11924-11939, 2003.
Sjostrom, S. and Krutka, H. “Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture” Fuel, 89, 1298-1306, 2010.
Son, W. J.; Choi, J. K. and Ahn, W. S. “Adsorptive Removal of carbon Dioxide Using Polyethyleneimine-loaded Mesoporous Silica Materials” Microporous Mesoporous Mater., 113, 31-40, 2008.
Srikanth, C. S. and Chuang, S. S. C. “Infrared Study of Strongly and Weakly Adsorbed CO2 on Fresh and Oxidatively Degraded Amine Sorbents” J. Phys. Chem. C, 117, 9196-9205, 2013.
Su, F.; Lu, C.; Cnen, W.; Bai, H. and Hwang, J. F. Capture of CO2 from Flue Gas via Multiwalled Carbon Nanotubes. Sci. Total Environ., 407, 3017-3023, 2009.
Subagyono, D. J. N.; Marshall, M.; Knowles, G. P. and Chaffee, A. L. “CO2 Adsorption by Amine Modified Siliceous Mesostructured Cellular Foam (MCF) in Humidified Gas” Micropor. Mesopor. Mater., 186, 84-93, 2014.
Sun, Y. ; Liu, X. W. ; Su, W. ; Zhou, Y. and Zhou, L. “Studies on Ordered Mesoporous Materials for Potential Environmental and Clean Energy Appilcations” Appl. Surf. Sci., 253, 5650-5655, 2007.
Sunho, C.; Drese, J. H.; Eisenberger, P. M. and Jones, C. W. “Application of Amine-Tethered Solid Sorbents for Direct CO2 Capture from the Ambient Air” Environ. Sci. Technol., 45, 2420-2427, 2011.
Tan, C. S. and Chen, J. E. “Absorption of Carbon Dioxide with Piperazine and its Mixtures in a Rotating Packed Bed” Sep. Purif. Technol., 49 174-180, 2006.
Tanthana, J. and Chuang, S. S. C. “In Situ Infrared Study of the Role of PEG in Stabilizing Silica-Supported Amines for CO2 Capture” ChemSusChem, 3, 957-964, 2010.
Thiruvenkatachari, R.; Su, S.; An, H. and Yu, X. X. “Post Combustion CO2 Capture by Carbon Fiber Monolithic Adsorbents” Progress in Energy and Combustion” Science, 35, 438-455, 2009.
Thote, J. A.; Iyer, K. S.; Chatti, R.; Labhsetwar, N. K.; Biniwale, R. B. and Rayalu, S. S. “In Situ Nitrogen Enriched Carbon for Carbon Dioxide Capture” Carbon, 48, 396-402, 2010.
Topka, P.; Karban, J.; Soukup, K.; Jirátová, K. and Šolcová, O. “Preparation of Al-SBA-15 Pellets with Low Amount of Additives: Effect of Binder Content on Texture and Mechanical Properties. Application to Friedel-Crafts Alkylation” Chem. Eng. J., 168, 433-440, 2011.
Venegas, M. J.; Fregoso-Israel, E.; Escamilla, R. and Pfeiffer, H. “Kinetic and Reaction Mechanism of CO2 sorption on Li4SiO4: Study of the Particle Size Effect” J. Ind. Eng. Chem., 46, 2407-2412, 2007.
Wang, X.; Chan, J. C. C.; Tseng, Y. H. and Cheng, S. “Synthesis, Characterization and Catalytic Activity of Ordered SBA-15 Materials Containing High Loading of Diamine Functional Groups” Microporous Mesoporous Mater., 95, 57-65, 2006.
Wang, X.; Lin, K. S. K.; Chan, J. C. C. and Chen, S. “Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-functionalized SBA-15” J. Phys. Chem. B, 109, 1763-1769, 2005.
Wang, Q.; Luo, J.; Zhong, Z. and Borgna, A. “CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends” Energy Environ. Sci., 4, 42-55, 2011b.
Wang, X.; Ma, X.; Song, C.; Locke, D. R.; Siefert, S.; Winans, R. E.; Mollmer, J.; Lange, M.; Moller, A. and Glaser, R. “Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from flue gas: Characterization and sorption properties” Micropor. Mesopor. Mater., 169, 103-111, 2013.
Wang, D.; Ma, X.; Sentorun-Shalaby, C. and Song, C. “Development of Carbon-based “Molecular Basket” Sorbent for CO2 capture” Ind. Chem. Eng. Res., 51, 3048-3057, 2012.
Wang, X.; Schwartz, V.; Clark, J. C.; Ma, X.; Overbury, S. H.; Xu, X. and Song, C. “Infrared Study of CO2 Sorption over ”Molecular Basket” Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve” J. Phys. Chem. C, 113, 7260-7268, 2009.
Wang, D.; Sentorun-Shalaby, C.; Ma, X. and Song, C. “High-Capacity and Low-Cost Carbon-Based “Molecular Basket” Sorbent for CO2 Capture from Flue Gas” Energy Fuels, 25, 456-458, 2011a.
Wang, X. and Song, C. “Temperature-programmed Desorption of CO2 from Polyethylenimine-Loaded SBA-15 as Molecular Basket Sorbents” Catal. Today, 194, 44-52, 2012.
Wang, L. and Yang, R.T. “Increasing Selective CO2 Adsorption on Amine-Grafted SBA-15 by Increasing Silanol Density” J. Phys. Chem. C, 115, 21264-21272, 2011.
Wang, Y.; Zhou, Y.; Liu, C. and Zhou, L. “Comparative Studies of CO2 and CH4 Sorption on Activated Carbon in Presence of Water” Colloids Surf. A, 322, 14-18, 2008.
Wei, J.; Shi, J.; Pan, H.; Zhao, W.; Ye, Q. and Shi, Y. “Adsorption of Carbon Dioxide on Organically Functionalized SBA-16” Microporous Mesoporous Materials 116, 394-399, 2008.
Wen, J. J.; Fang, N. G.; Wei, F.; Zhou, Y.; Lin, W. G., Yang, J.; Yang, J. Y.; Wang, Y.; Zou, Z. G. and Zhu, J. H. “One-pot Synthesis of Amine-modified Meso-structured Monolith CO2 Adsorbent.” J. Mater. Chem., 20, 2010, 2840-2846.
Wilke, C. R. and Chang, P. “Correlation of Diffusion Coefficients in Dilute Solution” AIChE J., 1 264-270, 1955.
Xiong, R.; Ida, J. and Lin, Y.S. “Kinetics of Carbon Dioxide Sorption on Potassium-doped Lithium Zirconate” Chem. Eng. Sci., 58, 4377-4385, 2003.
Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G. and Scaroni, A. W. “Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture” Energy Fuels, 16, 1463-1469, 2002.
Xu, X.; Song, C.; Andrésen, J. M.; Miller, B. G. and Scaroni, A. W. “Preparation and Characterization of Novel CO2 “Molecular Basket” Adsorbents Based on Polymer-modified Mesoporous Molecular Sieve MCM-41.” Micropor. Mesopor. Mater” 62, 29-45, 2003.
Xu, X.; Song, C.; Miller, B. G. and Scaroni, A. W. “Influence of Moisture on CO2 Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41” Ind. Eng. Chem. Res., 44, 8113-8119, 2005.
Yang, C. M. and Chao, K. J. “Functionalization of Molecularly Templated Mesoporous Silica” J. Chinese Chem. Soc., 49, 883-893, 2002.
Yang, Y.; Li, H.; Chen, S.; Zhao, Y. and Li, Q. ”Preparation and Characterization of a Solid Amine Adsorbent for Capturing CO2 by Grafting Allylamine onto PAN Fiber” Langmuir, 26, 13897-13902, 2010.
Yokoi, T. and Tatsumi, T. “Synthesis of Mesoporous Silica Materials by Using Anionic Surfactant as Template” J. Jpn. Petrol. Inst., 50, 299-310, 2007.
Yokoi, T.; Sato, S.; Ara, Y.; Lu, D.; Kubota, Y. and Tatsumi, T. “Synthesis of Chiral Mesoporous Silica and its Potential Application to Asymmetric Separation” Adsorption, 16, 577-586, 2010.
Yokoi, T.; Yamataka, Y.; Ara, Y.; Sato, S.; Kubota, Y. and Tatsumi, T. “Synthesis of Chiral Mesoporous Silica by Using Chiral Anionic Surfactants” Microporous Mesoporous Mater., 103, 20-28, 2007.
Yokoi, T.; Yoshitake, H. and Tatsumi, T. “Synthesis of Anionic-surfactant-templated Mesoporous Using Organoalkoxysilane-containing Amino Groups” Chem. Mater., 15, 4536-4538, 2003.
Yokoi, T.; Yoshitake, H. and Tatsumi, T. “Synthesis of Amino-functionalized MCM-41 via Direct Co-condensation and Post-synthesis Grafting Methods Using Mono-, Di- and Tri-amino-Organoalkoxysilanes” J. Mater. Chem., 14, 951-957, 2004.
Yokoi, T.; Yoshitake, H.; Yamada, T.; Kubota, Y. and Tatsumi, T. “Amino-functionalized Mesoporous Silica Synthesized by An Ionic Surfactant Template Route” J. Mater. Chem., 16, 1125-1135, 2006.
Yu, F. C. and Fan, L. S. “Kinetic Study of High-Pressure Carbonation Reaction of Calcium-Based Sorbents in the Calcium Looping Process (CLP)” Ind. Eng. Chem. Res., 50, 11528-11536, 2011.
Yu, C. H.; Huang, C. H. and Tan, C. S. “A Review of CO2 Capture by Absorption and Adsorption”, Aerosol Air Qual. Res., 12, 745-769, 2012.
Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X. and Zhu, J.H. “CO2 Capture by As-Prepared SBA-15 with an Occluded Organic Template” Adv. Funct. Mater., 16, 1717-1722, 2006.
Yue, M. B.; Sun, L. B.; Cao, Y.; Wang, Y.; Wang, Z. J. and Zhu, J. H. “Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine” Chem. Eur. J., 14, 3442-3451, 2008a.
Yue, M. B.; Sun, L. B.; Cao, Y.; Wang, Z. J.; Wang, Y.; Yu, Q. and Zhu, J. H. “Promoting the CO2 Adsorption in the Amine-containing SBA-15 by Hydroxyl group” Microporous Mesoporous Mater, 114, 74-81, 2008b.
Zhang, Z.; Ma, X.; Wang, D.; Song, C. and Wang, Y. “Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas” AIChE J., 58, 2495-2502, 2012.
Zhang, Y.; Maroto-Valer, M. M. and Tang, Z. “Microporous Activated Carbons Produced from Unburned Carbon Fly Ash and their Application for CO2 Capture” Div. Fuel Chem., Am. Chem. Soc.-Prepr. Symp., 49, 304-305, 2004
Zhang, J., Xiao, P., Li, G. and Webley, P. A. “Effect of Flue Gas Impurities on CO2 Cautpre Performance from Flue Gas at Coal-fired Power Stations by Vacuum Swing Adsorption” Energy Procedia, 1, 1115-1122, 2009a.
Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F. and Stucky, G.D. “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores” Science, 279, 548-552, 1998a.
Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F. and Stucky, G. D. “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable Mesoporous Silica Structures” J. Am. Chem. Soc., 120, 6024-6036, 1998b.
Zhao, H.; Ma, Y.; Tang, J.; Hu, J. and Liu, H. “Influence of the Solvent Properties on MCM-41 Surface Modification of Aminosilanes” J. Solution Chem., 40, 740-749, 2011.