簡易檢索 / 詳目顯示

研究生: 蘇聖雲
Su, Sheng-Yun
論文名稱: 高熵合金介金屬析出相之研究 : 元素序化、晶格扭曲及成長動力學
The Study on the Precipitates of High Entropy Alloys ─Elemental Ordering, Lattice Distortion and Coarsening Kinetics
指導教授: 呂明諺
Lu, Ming-Yen
口試委員: 葉均蔚
Yeh, Jien-Wei
蔡銘洪
Tsai, Ming-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 高熵合金晶格扭曲穿透式電子顯微鏡析出物成長動力學
外文關鍵詞: High-Entropy Alloy, Lattice Distortion, Transmission Electron Microscope, Coarsening Kinetics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對高熵合金中四大核心效應:高熵效應、雞尾酒效應、嚴重晶格扭曲效應和遲緩擴散效應中的後二者效應,以目前較少研究的介金屬析出相為材料進行探討,研究分為兩大主題,高熵合金系統中σ相的元素序化及晶格扭曲和γ’相的析出動力學。
    在第一部份的研究中,我們透過不同的研究方法計算出不同物理意義上的晶格扭曲量值,分別為:系統內元素成分尺寸的標準差(δ)≈9.9 % 、實際與標準狀態下的晶格常數差異(ε)≈2.74 %、利用Williamson-Hall方程式計算出的微觀應變(ε_WH)≈9.2 %以及原子影像內各晶格常數間的變異係數(CV)≈3 %。並且透過Cs-STEM的高解析原子影像證實高熵合金系統的介金屬σ相與一般二元合金相比有較大的晶格扭曲量及較低的序化程度。此外,透過原子級的EELS mapping,我們發現高熵合金系統σ相晶格中元素的佔據模式與以往σ相的AB類元素佔據方式有所不同。
    第二部分的研究我們發現透過調整高熵合金Cu的含量,能使合金的析出行為產生變化。Cu的加入使析出物粗化的反應速率、活化能及析出物尺寸增加,不過會小幅的降低析出物密度與析出物總體積分率。得到的結果顯示此合金與Ni基合金相比有明顯較低的析出物粗化速率以及較高的活化能,驗證高熵合金中的遲緩擴散效應。


    This study focuses on two of core effects of high-entropy alloys (HEAs): the severe lattice distortion and the sluggish diffusion. We concentrate in the discussion of the intermetallic precipitation phases, and the study can be divided into two parts based on different HEA systems, namely: elemental ordering and lattice distortion of σ phase and the precipitation kinetics of the γ' phase.
    In first part, we extracted the lattice distortion values of σ phase in HEA through different approaches, the standard deviation of the atom size in the system (δ) ≈ 9.9 %, the difference of lattice constant between experimental and theoretical states (ε) ≈ 2.74 %, and the microscopic strains calculated by the Williamson-Hall equation (ε_WH) ≈ 9.2 %, and the coefficient of variation (CV) ≈ 3% between the lattice constants calculates from atomic image. According to the atomic STEM image, it is confirmed that the intermetallic σ phase in the HEA system has larger lattice distortion and lower degree of ordering compared with the conventional binary alloy system. Besides, through atomic EELS mapping, we found that the occupant possibility of the elements in the σ phase of the HEA system is different from that in the conventional binary alloy system.
    In the second part of the study, we found that the precipitation behavior of the alloy can be changed by adjusting the content of Cu in HEA system. The coarsening rate (K), activation energy (Q) and precipitate size (d) increase with the addition of Cu, nevertheless, the precipitate density (Nv) and total volume ratio of the precipitate (ϕ) are also slightly decreased. The calculated results show that these HEAs has the significantly lower precipitation coarsening rate and higher activation energy than other Ni-based alloy, which verifies the sluggish diffusion effect in the HEA system.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論與文獻探討 1 1.1. 高熵合金與其基本特性(High Entropy Alloys, HEAs) 1 1.1.1. 高熵效應 (High Entropy Effect) 3 1.1.2. 雞尾酒效應 (Cocktail Effect) 4 1.1.3. 嚴重晶格扭曲效應 (Severe Lattice Distortion Effect) 6 1.1.4. 延緩擴散效應 (Sluggish Diffusion Effect) 8 1.2. 析出強化 (Precipitation Hardening) 10 1.2.1. 介金屬Sigma (σ) 析出相 (Sigma precipitates) 12 1.2.2. 介金屬 Gamma prime (γ’) 析出相 (Gamma prime precipitates) 14 1.3. 合金系統中的晶格扭曲研究 16 1.3.1. Williamson – Hall 方程式 (Williamson Hall Equation) 18 1.4. 合金系統中的析出物成長動力學 (Coarsening Kinetics) 20 1.4.1. LSW 與其他晶粒粗化模型 (LSW Coarsening Model) 21 1.5. 研究動機 22 第二章 實驗方法與儀器 23 2.1. 實驗架構與步驟 23 2.1.1. 實驗架構 23 2.1.2. 高熵合金之TEM試片製備及定位方法 25 2.2. 實驗儀器介紹 27 2.2.1. X光繞射分析儀 (X-Ray Diffractometer, XRD) 27 2.2.2. xHREM 影像模擬軟體 28 2.2.3. 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 29 2.2.4. 能量色散X-射線光譜儀 (Energy-Dispersive X-Ray Spectroscopy, EDS) 31 2.2.5. 電子能量損失能譜 (Electron Energy Loss Spectroscopy, EELS) 32 2.2.6. 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 33 2.2.7. 電子背向散射繞射 (Electron Back Scattering Diffraction, EBSD) 34 2.2.8. 聚焦離子束 (Focus Ion Beam, FIB) 35 第三章 結果與討論 36 3.1. 高熵合金中析出相之晶格扭曲 36 3.1.1. 合金系統選擇及相分析 36 3.1.2. 微觀尺度晶格扭曲 38 3.1.2.1. 組成原子數量及大小的估算方法 38 3.1.2.2. 平均晶格常數的實驗值與標準狀態的理論值差異 39 3.1.2.3. Williamson-Hall 方程式計算 40 3.1.3. STEM原子影像晶格扭曲探討 42 3.1.3.1 利用xHREM選擇分析晶軸 42 3.1.3.2 σ相[001]晶軸TEM分析 43 3.1.3.3 σ相原子扭曲量化分析 45 3.2. 高熵合金中析出相之元素序化 48 3.2.1. 不同序化程度之析出相模擬影像 48 3.2.2. 原子尺度之元素分佈 50 3.3. 高熵合金中析出物成長動力學 53 3.3.1. 合金系統選擇 53 3.3.2. 時效熱處理之微結構變化 54 3.3.3. 反應速率及活化能 57 3.3.4. 與常見合金之比較 63 第四章 結論 68 第五章 未來展望 69 參考文獻 70

    1 Lo, K. H., Shek, C. H. & Lai, J. Recent developments in stainless steels. Materials Science and Engineering: R: Reports 65, 39-104 (2009).
    2 Huang, K.-H. & Yeh, J. A study on the multicomponent alloy systems containing equal-mole elements. Hsinchu: National Tsing Hua University (1996).
    3 Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H. & Chang, S. Y. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials 6, 299-303 (2004).
    4 Jien-Wei, Y. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat 31, 633-648 (2006).
    5 Tsai, M.-H. & Yeh, J.-W. High-entropy alloys: a critical review. Materials Research Letters 2, 107-123 (2014).
    6 He, J., Wang, H., Huang, H., Xu, X., Chen, M., Wu, Y., Liu, X., Nieh, T., An, K. & Lu, Z. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia 102, 187-196 (2016).
    7 Hsu, C.-Y., Juan, C.-C., Wang, W.-R., Sheu, T.-S., Yeh, J.-W. & Chen, S.-K. On the superior hot hardness and softening resistance of AlCoCrxFeMo0. 5Ni high-entropy alloys. Materials Science and Engineering: A 528, 3581-3588 (2011).
    8 Chuang, M.-H., Tsai, M.-H., Wang, W.-R., Lin, S.-J. & Yeh, J.-W. Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys. Acta Materialia 59, 6308-6317 (2011).
    9 Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P. & Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153-1158 (2014).
    10 Senkov, O., Wilks, G., Miracle, D., Chuang, C. & Liaw, P. Refractory high-entropy alloys. Intermetallics 18, 1758-1765 (2010).
    11 Ng, C., Guo, S., Luan, J., Shi, S. & Liu, C. T. Entropy-driven phase stability and slow diffusion kinetics in an Al0. 5CoCrCuFeNi high entropy alloy. Intermetallics 31, 165-172 (2012).
    12 Chen, Y., Duval, T., Hung, U., Yeh, J. & Shih, H. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science 47, 2257-2279 (2005).
    13 Yeh, J.-W. Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759-1771 (2013).
    14 Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Materialia 122, 448-511 (2017).
    15 Hsu, C.-Y., Yeh, J.-W., Chen, S.-K. & Shun, T.-T. Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5 Fe alloy with boron addition. Metallurgical and Materials Transactions A 35, 1465-1469 (2004).
    16 Senkov, O. N., Wilks, G., Scott, J. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698-706 (2011).
    17 Zhang, Y., Zuo, T., Cheng, Y. & Liaw, P. K. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Scientific Reports 3, 1455 (2013).
    18 Ranganathan, S. Alloyed pleasures: multimetallic cocktails. Current Science 85, 1404-1406 (2003).
    19 Yeh, J.-W., Chang, S.-Y., Hong, Y.-D., Chen, S.-K. & Lin, S.-J. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics 103, 41-46 (2007).
    20 Senkov, O., Senkova, S., Miracle, D. & Woodward, C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A 565, 51-62 (2013).
    21 Tsai, M.-H. Physical properties of high entropy alloys. Entropy 15, 5338-5345 (2013).
    22 Lu, C.-L., Lu, S.-Y., Yeh, J.-W. & Hsu, W.-K. Thermal expansion and enhanced heat transfer in high-entropy alloys. Journal of Applied Crystallography 46, 736-739 (2013).
    23 Tsai, M.-H., Yeh, J.-W. & Gan, J.-Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 516, 5527-5530 (2008).
    24 Tsai, K.-Y., Tsai, M.-H. & Yeh, J.-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia 61, 4887-4897 (2013).
    25 Wilm, A. Physical-Metallurgical Investigation of Aluminum-Magnesium Alloys. Metallurgie 8, 225-227 (1911).
    26 Ardell, A. Precipitation hardening. Metallurgical Transactions A 16, 2131-2165 (1985).
    27 Kelly, A. Precipitation hardening. Progress in Material Science 10, 151-391 (1963).
    28 Cantor, B., Chang, I., Knight, P. & Vincent, A. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 375, 213-218 (2004).
    29 Senkov, O., Scott, J., Senkova, S., Miracle, D. & Woodward, C. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds 509, 6043-6048 (2011).
    30 Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L. & Koch, C. C. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters 3, 95-99 (2015).
    31 Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G. & George, E. P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia 61, 5743-5755 (2013).
    32 Joubert, J.-M. Crystal chemistry and Calphad modeling of the σ phase. Progress in Materials Science 53, 528-583 (2008).
    33 Hall, E. & Algie, S. The sigma phase. Metallurgical Reviews 11, 61-88 (1966).
    34 Lin, C.-W., Tsai, M.-H., Tsai, C.-W., Yeh, J.-W. & Chen, S.-K. Microstructure and aging behaviour of Al5Cr32Fe35Ni22Ti6 high entropy alloy. Materials Science and Technology 31, 1165-1170 (2015).
    35 Furrer, D. U. & Fecht, H.-J. γ′ formation in superalloy U720LI. Scripta Materialia 40, 1215-1220 (1999).
    36 Löhnert, K. & Pyczak, F. in 7th International Symposium on Superalloy 718 and Derivatives. 877 (TMS Warrendale, PA).
    37 Nembach, E. & Neite, G. Precipitation hardening of superalloys by ordered γ′-particles. Progress in Materials Science 29, 177-319 (1985).
    38 Shun, T.-T., Hung, C.-H. & Lee, C.-F. Formation of ordered/disordered nanoparticles in FCC high entropy alloys. Journal of Alloys and Compounds 493, 105-109 (2010).
    39 Wang, Z., Qiu, W., Yang, Y. & Liu, C. Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64, 63-69 (2015).
    40 Owen, L., Pickering, E., Playford, H., Stone, H. J., Tucker, M. & Jones, N. G. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Materialia 122, 11-18 (2017).
    41 Larson, A. & Von Dreele, R. GSAS Generalized Structure Analysis System, Laur, 86-748. Los Alamos National Laboratory, Los Alamos, New Mexico (1994).
    42 Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L. & Hui, Q. RMCProfile: reverse Monte Carlo for polycrystalline materials. Journal of Physics: Condensed Matter 19, 335218 (2007).
    43 Zak, A. K., Majid, W. A., Abrishami, M. E. & Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences 13, 251-256 (2011).
    44 Zhao, Y.-H., Liao, X.-Z., Cheng, S., Ma, E. & Zhu, Y. T. Simultaneously increasing the ductility and strength of nanostructured alloys. Advanced Materials 18, 2280-2283 (2006).
    45 Williamson, G. & Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1, 22-31 (1953).
    46 Armstrong, B. Spectrum line profiles: the Voigt function. Journal of Quantitative Spectroscopy and Radiative Transfer 7, 61-88 (1967).
    47 Sánchez-Bajo, F. & Cumbrera, F. The use of the pseudo-Voigt function in the variance method of X-ray line-broadening analysis. Journal of Applied Crystallography 30, 427-430 (1997).
    48 Voorhees, P. W. The theory of Ostwald ripening. Journal of Statistical Physics 38, 231-252 (1985).
    49 Ardell, A. J. & Ozolins, V. Trans-interface diffusion-controlled coarsening. Nature Materials 4, 309 (2005).
    50 Wang, T., Sheng, G., Liu, Z.-K. & Chen, L.-Q. Coarsening kinetics of γ′ precipitates in the Ni–Al–Mo system. Acta Materialia 56, 5544-5551 (2008).
    51 Baldan, A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. Journal of Materials Science 37, 2171-2202 (2002).
    52 Kuehmann, C. & Voorhees, P. Ostwald ripening in ternary alloys. Metallurgical and Materials Transactions A 27, 937-943 (1996).
    53 Ishizuka, K. A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71-83 (2002).
    54 Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron backscatter diffraction in materials science. (Springer, 2000).
    55 Clementi, E. & Raimondi, D.-L. Atomic screening constants from SCF functions. The Journal of Chemical Physics 38, 2686-2689 (1963).
    56 Buschow, K. v., Van Engen, P. & Jongebreur, R. Magneto-optical properties of metallic ferromagnetic materials. Journal of Magnetism and Magnetic Materials 38, 1-22 (1983).
    57 Wilson, C. & Spooner, F. Ordering of atoms in the sigma phase FeMo. Acta Crystallographica 16, 230-231 (1963).
    58 Lapin, J., Gebura, M., Pelachová, T. & Nazmy, M. Coarsening kinetics of cuboidal γ'precipitates in single crystal nickel base superalloy CMSX-4. Kovove Mater 46, 313-322 (2008).
    59 Fuller, C. B. & Seidman, D. N. Temporal evolution of the nanostructure of Al (Sc, Zr) alloys: Part II-coarsening of Al3 (Sc1− xZrx) precipitates. Acta Materialia 53, 5415-5428 (2005).
    60 Fuller, C. B., Murray, J. L. & Seidman, D. N. Temporal evolution of the nanostructure of Al (Sc, Zr) alloys: Part I–Chemical compositions of Al3 (Sc1− xZrx) precipitates. Acta Materialia 53, 5401-5413 (2005).
    61 Irisarri, A., Urcola, J. & Fuentes, M. Kinetics of growth of γ′ precipitates in Ni–6.75AI alloy. Materials Science and Technology 1, 516-519 (1985).
    62 Garay-Reyes, C., Hernández-Santiago, F., Cayetano-Castro, N., Lopez-Hirata, V. M., García-Rocha, J., Hernández-Rivera, J., Dorantes-Rosales, H. J. & Cruz-Rivera, J. Study of phase decomposition and coarsening of γ′ precipitates in Ni-12 at.% Ti alloy. Materials Characterization 83, 35-42 (2013).
    63 Jayanth, C. & Nash, P. Experimental evaluation of particle coarsening theories. Materials Science and Technology 6, 405-414 (1990).
    64 Davies, C., Nash, P. & Stevens, R. Precipitation in Ni-Co-Al alloys. Journal of Materials Science 15, 1521-1532 (1980).
    65 Njah, N. & Dimitrov, O. Microstructural evolution of nickel-rich Ni-Al-Ti alloys during aging treatments: the effect of composition. Acta Metallurgica 37, 2559-2566 (1989).
    66 Footner, P. & Richards, B. Long term growth of superalloy γ′ particles. Journal of Materials Science 17, 2141-2153 (1982).
    67 Reppich, B., Kühlein, W., Meyer, G., Puppel, D., Schulz, M. & Schumann, G. Duplex γ′ particle hardening of the superalloy Nimonic PE 16. Materials Science and Engineering 83, 45-63 (1986).

    QR CODE