簡易檢索 / 詳目顯示

研究生: 邵震茹
Jenn-Ru Shao
論文名稱: 研發氣相層析-同位素比質譜儀分析方法並應用於環境污染物及濫用藥物來源鑑識
Developing CSIA Method with GC-IRMS for Source Apportionment of Environmental Contaminants and Tracing Origins of Methamphetamine
指導教授: 凌永健
Yong-Chien Ling
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 146
中文關鍵詞: 氣相層析-同位素質譜儀環境污染物濫用藥物來源鑑識
外文關鍵詞: GC-IRMS, CSIA, environmental contaminants, methamphetamine, source apportionment, tracing origins
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以氣相層析-同位素質譜儀(Gas Chromatograph-isotope ratio mass spectrometer, 簡稱GC-IRMS)為基礎之化合物別安定性同位素分析技術(Compound-specific stable isotope analysis, 簡稱CSIA),在歐美先進國家已發展多年,主要是應用在同種化合物的來源鑑識,例如:環境法科學(Environmental forensic science)領域應用於環境污染物的來源追踪,生物降解(Biodegradation)領域應用於監測污染水層生物降解現象,作為生物復育評估參考,法科學(Forensic science)領域應用於毒品禁藥來源追踪,爆裂物、可燃物的證物鑑識,藥物食品領域則應用食品來源追溯、摻假鑑別及運動比賽各種類禁藥濫用的鑑識,在1997年已被國際奧會(IOC)醫學委員會接受為區別外生性(exogenous synthetic)和內生性(endogenous human)睪酯酮(testosterone)之方法,正式列入運動員類固醇濫用檢驗項目中,但國內尚無此一分析技術實屬可惜,有鑑於此國內環境保護署環境檢驗所於2004年開始引進此一技術,因執行計畫緣由,有幸對CSIA技術進行研究而誕生此論文。
    本論文研究目的在於應用GC-IRMS開發CSIA技術應用於工業廢棄物中有機溶劑成分來源鑑識(第二章);污染場址地下水中含氯污染物生物降解監測,估算地下水中污染物生物降解程度,研究生物復育可行性(第三章);高雄港底泥中16種多環芳香烴(Polyaromatic hydrocarbon,簡稱:PAHs)來源追踪,以作為環境污染來源指標(第四章);濫用藥物嫌犯尿液中甲基安非他命(Methamphetamine)成分鑑識甲基安非他命毒品來源(第五章)。GC-IRMS先天上有靈敏度差、易受基質干擾及量測同位素比值偏移的限制,故本論文研究方法除基本GC-IRMS分析方法開發外,更著重開發儀器校驗方法、前濃縮技術 (例如:固相微萃取(SPME)技術)與可製備高純萃液的前處理方法(例如:微波萃取-管柱浄化-薄層層析純化串聯並用)克服GC-IRMS先天限制,使CSIA技術得以應用於環境藥物真實樣品分析;數據處理系統方面,結合單因子變異數分析(One Way ANOVA)、因素分析(Factor analysis)、群集分析(Cluster analysis)三統計方法作為鑑識來源相關性的判別基準,確保判別結果的合理性。
    本論文研究結果顯示工業廢棄物中有某些特有機溶劑成分□13C值,例如:Capolactam、Methyl isobutyl ketone、acetone…等可作為來源相關性指標,再透過建立之□13C溶劑資料庫比對更可確認污染來源;污染場址污染源中、下游監測井中含氯污染物□13C值變正(Enrichment)趨勢進行污染物生物降解監測,估算出污染源中、下游地下水中污染物生物降解程度分別為40%, 90%,顯示該污染場址應有進行生物復育潛力;高雄港底泥中PAHs成分來源,主要為燃煤/冶煉廠、交通工具及焚化爐排放之熱解來源(Pyrogenic),其次則為船隻漏油造成之石油來源(Petrogenic)及近港陸源植物產生之生物來源(Biogenic);濫用藥物嫌犯尿液中甲基安非他命成分□13C值與□15N值,主要可分為兩大群,地縁性高,除此外麻黃鹼標準品□13C值與□15N值顯示兩件麻黃鹼來自半合成與全合成,甲基安非他命標準品□13C值與□15N值顯示三件甲基安非他命中有兩件來自麻黃萃取,一件來自合成。由各研究結論顯示,以GC-IRMS 為基礎之CSIA技術可成功的應用於環境污染物、濫用藥物來源鑑識及生物降解監測。


    CSIA based on GC-IRMS has been widely used in many fields in USA and Europe. The major applications of CSIA is source identification of same material, such as, identifying pollution source in environmental forensics, monitoring biodegradation of contaminants in ground water at polluted site and evaluating natural attenuation, identifying explosives, ignitable liquid and tracing origin of illicit drugs in forensic science, proof of authenticity of various foods, beverage products, drug products or quality control for food and drug applications. Especially, CSIA was officially accepted by IOC (International Olympic Committee) for differentiating between endogenous human testosterone and exogenous testosterone in order to identify cases of testosterone doping in sporting events in 1997.
    The purpose of this thesis is using GC-IRMS to develop CSIA technology for source identification of organic solvents in industrial wastes (chapter 2), monitoring biodegradation of contaminants in ground water at polluted site for evaluating extent of biodegradation in ground water and evaluating feasibility of bioremediation (chapter 3), source identification of 16 PAHs (Polyaromatic hydrocarbons) in sediments from Kaohsiung Harbor, Taiwan (chapter 4) and tracing origins of urinary methamphetamines from suspected drug abusers (chapter 5). The applications of CSIA with GC-IRMS are limited, presumably due to its poor sensitivity, serious matrix interference and isotope ratio data uncertainty. So, in addition to develop GC-IRMS analysis method, we had to develop GC-IRMS calibration method to obtain precise and accurate □13C, □15N, develop SPME preconcentration technique to improve sensitivity, and develop pretreatment method to remove matrix interferences for successful analysis of environmental or urinary real samples. For data processing, we combined one way ANOVA, factor analysis, and cluster analysis to differentiate relationships between same materials from different source in order to results correctly.
    We have found that □□□C of some characteristic components in industrial wastes, such as capolactam, methyl isobutyl ketone, acetone…etc. could be used as an indicator for source identification. The extends of biodegradation (B) of contaminants could be estimated by enrichment tendency of □□□C of contaminants. The biodegradation efficiency of chlorine containing solvents in ground water at polluted site were 40 %, 90 %, respectively, indicating that biodegradation occurred at the polluted site. PAHs in sediments from Kaohsiung Harbor are mainly pyrogenic, else are petrogenic and biogenic. Most come from coal pyrolysis, smelter emission, vehicular emission and incinerator emission; else come from fuel of fish boat, cruise ship leaking, photosynthesis of plants, and biodegradation. □□□C and □□□N of methamphetamine in 11 urinary sample from suspected drug abusers were divided into two groups, presumably due to difference in seizing area. Two ephedrine standards were found to from semi synthesis and synthesis based on their □□□C and □□□N values. Two methamphetamine standards were formed to be synthesis routes from ephedrine; where as one was synthesized from synthetic precursors. The results evidence that CSIA based on GC-IRMS could be successfully applied to source identification of environmental pollutants, tracing origins of illicit drugs, and monitoring biodegradation of contaminants in ground water at polluted site.

    Chapter 1 Introduction 1.1 Principle of CSIA 1 1.2 Gas Chromatography- Isotope Ratio Mass Spectrometry 2 1.3 Calibration of GC-IRMS 3 1.3.1 Materials 3 1.3.2 Vacuum test of IRMS system 3 1.3.3 Mass resolution test of IRMS 3 1.3.4 System suitability test of GC-IRMS 4 1.3.5 Linearity test of ion source 4 1.3.6 Calibration of reference gas 5 1.3.7 Accuracy test of GC-IRMS 6 1.4 Applications of CSIA 7 1.4.1 Forensic science 7 1.4.2 Foods 7 1.4.3 Drugs. 7 1.4.4 Environmental forensics 8 1.4.5 Natural attenuation 9 1.5 Thesis structure 9 1.6 References 11 Chapter 2 Compound Specification Carbon Isotope Analysis of Organic Solvents by GC-IRMS for Source Identification in Environmental Forensics 2.1 Introduction 20 2.2 Experimental 20 2.2.1 Materials 20 2.2.2 Sampling 21 2.2.3 Gas Chromatograph Isotope Ratio Mass Spectrometer 22 2.2.4 Organic solvents analysis by GC-IRMS 22 2.2.5 Industrial waste analysis by GC-IRMS 24 2.2.6 Data processing 26 2.3 Results and discussion 28 2.3.1 Method validation 28 2.3.2 □13C database of organic solvents 28 2.3.3 Data processing. 29 2.3.4 Source identification 29 2.4 Conclusions 32 2.5 References 33 Chapter 3 Biodegradation of Chlorinated Hydrocarbon in Groundwater at a Pollution Site Using GC-IRMS CSIA 3.1 Introduction 51 3.2 Experimental 52 3.2.1 Materials 52 3.2.2 Instrument 53 3.2.3 Method 54 3.2.4 Simulated weathering experiment based on microbial degradation set up 57 3.2.5 Sampling 58 3.2.6 Investigation of contaminants in groundwater at the pollution site 59 3.2.7 Feasibility of using CSIA in natural attenuation study 59 3.3 Results and discussion 59 3.3.1 Analytical results 59 3.3.2 Biodegradation mechanism 61 3.3.3 Case study of a pollution site 63 3.4 Conclusions 65 3.5 References 66 Chapter 4 Apportionment of Polycyclic Aromatic Hydrocarbons in Sediments at Kaohsiung Harbor, Taiwan Using GC-IRMS CSIA 4.1 Introduction 81 4.2 Experimental 83 4.2.1 Materials 83 4.2.2 Instrument 84 4.2.3 Pretreatment method 85 4.2.4 GC-MS quantitative analysis 87 4.2.5 GC-IRMS CSIA 88 4.2.6 Sampling 90 4.2.7 PAHs source apportionment procedure 91 4.3 Results and discussion 92 4.3.1 Pretreatment results 92 4.3.2 PAHs content in sediments 93 4.3.3 □13C values of 16 PAHs in sediments 95 4.3.4 PAHs source apportionment 96 4.4 Conclusions 98 4.5 References 101 Chapter 5 Developing CSIA with GC-IRMS for Tracing Origins of Methamphetamines in Urines from Suspected Drug Abusers 5.1 Introduction 124 5.2 Experimental 125 5.2.1 Materials 125 5.2.2 GC-IRMS analysis of abused drugs 125 5.2.3 GC-IRMS analysis of urinary samples 130 5.3 Results and discussion 132 5.3.1 Method validation 132 5.3.2 □13C and □15N of abused drugs and urinary samples 133 5.3.3 Data processing 134 5.3.4 Source identification 134 5.4 Conclusions 135 5.5 References 136 Fig. 1-1 Schematic diagram of the GC-IRMS instrument……………………………… 12 Fig. 1-2 Picture of the GC-IRMS instrument…………………………………………….12 Fig. 1-3 Stainless steel gas cylinder as sampler……………………………………… ….13 Fig. 1-4 The mass spectrum of IRMS mass resolution test………………………………13 Fig. 1-5 Diagram of CO2 reference On/Off test…………………………………………..14 Fig. 1-6 GC-IRMS chromatogram of FID test sample………………………………… ..14 Fig. 1-7 The linearity test diagram of CO2 reference gas (r□ 0.99)………………………15 Fig. 1-8 The linearity test diagram of N2 reference gas (r□ 0.99)………………………..15 Fig. 1-9 GC-IRMS chromatogram of Mix C calibrator…………………………………..16 Fig. 1-10 GC-IRMS chromatogram of acetanilide calibrator…………………………….16 Fig. 1-11 Diagram of thesis structure……………………………………………………..17 Fig. 2-1 GC-IRMS schematic diagram…………………………………………………...34 Fig. 2-2 Components: dichloromethane, chloroform, benzene and trichloroethylene might interfere with each other when 8 components were analyzed simultaneously….34 Fig. 2-3 The total procedure of source identification for industrial wastes………………35 Fig. 2-4 Components: cis 1,2-dichloro ethylene and 1,2-dichloro ethane when 2 components were analyzed simultaneously……………………………………..36 Fig. 2-5 XY scatter diagram of 54 d13C values for 54 organic solvents…………………37 Fig. 2-6 D940144 industrial waste sample bar chart……………………………………..38 Fig. 2-7 D940149 industrial waste sample bar chart……………………………………..38 Fig. 2-8 D940150 industrial waste sample bar chart……………………………………..38 Fig. 2-9 Factor analysis of 40 industrial waste samples 2D diagram…………………….39 Fig. 2-10 Source identification results with one way ANOVA for 54 organic solvents □13C database………………………………………………………………………...40 Fig. 2-11 Relationship of □13C values (Y-axis) and mixing ratio of two chloroforms (solvent-15 and solvent-16) with different source…………………………………..42 Fig. 2-12 Relationship of d13C values (Y-axis) and mixing ratio of two tetrachloro ethylenes (solvent-25 and solvent-27) with different source…………………..42 Fig. 3-1 SPME GC-IRMS schematic diagram……………………………………………68 Fig. 3-2 Apparatus of head space SPME extraction……………………………………...68 Fig. 3-3 Location of pollution site is on northwest of Taiwan (R.O.C.)………………….69 Fig. 3-4 The distribution of sampling wells from up to down gradient in pollution site and surrounding area…………………………………………………………………69 Fig. 3-5 Evalution procedure of CSCIA technology uses for natural attenuation in pollution site……………………………………………………………………..70 Fig. 3-6 The primer pair of 563F and 1357R directed PCR analysis. The chromosomal DNA was extracted by commercial kit and analyzed by PCR for each sample PCR product amplified by primers of 16S rRNA was run on 2 % agarose gel. The positive signals appeared in samples EX2 and MW122………………………….71 Fig. 3-7 The primer pair of tce-f and tce-r directed PCR analysis. The chromosomal DNA was extracted and analyzed by PCR for each sample PCR product amplified by primers of tceA was run on 2 % agarose gel. The positive signals were observed in samples EX2, EX13, A6 and MW122………………………………………..71 Fig. 3-8 The nested PCR analysis of 16S rRNA. The chromosomal DNA was extracted and analyzed by PCR for each sample PCR product amplified by the universal primers of 16S rRNA, eub-f and eub-r and re-amplified by the D. ethenogenes specific 16S rRNA primers, 563f and 1357r. After running on 2 % agarose gel, the nested PCR products could be observed in sample EX2, EX13 and MW108………………………………………………………………………….72 Fig. 3-9 HS-GC-FID chromatogram of PCE, TCE, cis-1,2-DCE, VC and IS in 4-Mix….72 Fig. 3-10 SPME-GC-IRMS chromatogram of PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1,1-TCA and p-DCB…………………………………………………………73 Fig. 3-11 Simulated sample (spiking PCE 80 □g/ml) HS-GC-FID chromatogram………73 Fig. 3-12 Simulated sample (spiking PCE 80 □g/ml) SPME-GC-IRMS chromatogram...74 Fig. 3-13 The relationship of peak areas of PCE, TCE, cis-1,2-DCE, VC and sampling time in simulated sample-1 (941122)………………………………………….74 Fig. 3-14 The relationship of □13C values of PCE, TCE, cis-1,2-DCE, VC and sampling time in simulated sample-1 (941122)…………………………………………..75 Fig. 3-15 Concentration data in studying report in April, 2003 followed NIEA W7853.53B method………………………………………………………………………….75 Fig. 3-16 Concentrations data in 6 samples in this study obtained from HS-GC-FID method………………………………………………………………………….76 Fig. 3-17 Contaminants PCE and daughter product TCE, cis-1,2-DCE and VC in four wells WM122, EX13 and A6 (S: pollution source; D: down gradient well in pollution site; DD: down gradient well in surrounding area)………………….76 Fig. 3-18 □13C of PCE enriched in down gradient well…………………………………..77 Fig. 3-19 □13C of cis-1,2-DCE enriched in down gradient well………………………….77 Fig. 3-20 □13C of TCE enriched in down gradient well…………………………………..78 Fig. 3-21 HS-GC-MS TIC chromatogram of groundwater sampled from down gradient MW122 well…………………………………………………………………...78 Fig. 4-1 The chemical structure of 16 PAHs, 6 biomarkers and surrogate structure….103 Fig. 4-2 Pretreatment procedure of sediments samples……………………………….104 Fig. 4-3 Location of Kaohsiung harbor in Taiwan……………………………………105 Fig. 4-4 27 sediments samples were sampled in Kaohsiung harbor sampling locations were divided into 3 areas, one is Lin-hai industrial park, second is main chanel, third is fourth channel…………………………………………105 Fig. 4-5 Procedure of source identification for PAHs in sediments…………………..106 Fig. 4-6 Two GC-IRMS chromatograms of simulated samples (sand blank spiked 16 PAHs and sand blank spiked 16 PAHs and DRO) purifying after stage 3…..107 Fig. 4-7 Two GC-IRMS chromatograms of simulated samples after stage 2 and Soxhelt extraction/ column clean up………………………………………………….107 Fig. 4-8 Three GC-IRMS chromatograms of 1 ml purified extract from stages (stage 1, stage 2 and stage 3) pretreatment of 5 g real sediments sample (M-4), respectively………………………………………………………………….108 Fig. 4-9 GC-MS SIM chromatograms of 16 PAHs and 2 surrogates (2-fluorobiphenyl and 4,4’-dibromooctafluorobiphenyl)……………………………………….109 Fig. 4-10 GC-MS TIC chromatograms of 6 biomarkers and Nap-d8 (IS) internal standard……………………………………………………………………..109 Fig. 4-11 GC-MS SIM/ GC-IRMS/ GC-FID chromatogram of 16 PAHs and 2 SS…..110 Fig. 4- 12 Tree diagram for 16 PAHs contents in seventeen sediments sample due to Euclidean distance statistic analysis and five groups were divided at linkage distance 4.2………………………………………………………………. 111 Fig. 4- 13 The identification results of TE purified extract GC-MS TIC chromatogram from NIST 98 database searching.………………………………………….111 Fig 4-14 The identification results of FB-1 purified extract GC-MS TIC chromatogram from NIST 98 database searching……………………………………………112 Fig. 4-15 The GC-IRMS chromatogram and GC-FID chromatogram of 5 g CP (CPC Corp. Taiwan in Lin-hai industrial park) sediments sample……………….112 Fig. 4-16 Broken-line diagram of □13C values to six kinds of PAHs for comparison of four sediments samples (CB-1, CB-2, CS-1 and CS-2)……………………112 Fig. 5- 1 Flow chart of pretreatment for 8 controlled drugs…………………………..137 Fig. 5- 2 Apparatus of head space type SPME (solid phase micro extration)………...138 Fig. 5- 3 500 □g/ml, 2 ml 13C GC-IRMS chromatogram of 8 mixing drugs…………..139 Fig. 5- 4 2000 □g/ml, 2 ml 15N GC-IRMS chromatogram of 8 mixing drugs ………...139 Fig. 5-5 3Mix-1 (Dexamethamphetamine,(±)MDMA, Ketamine) 15N GC-IRMS Chromatogram……………………………………………………………….139 Fig. 5- 6 3Mix-1 (Dexamethamphetamine,(±)MDMA, Ketamine) 13C GC-IRMS Chromatogram……………………………………………………………….140 Fig. 5- 7 13C HS-SPME GC-IRMS chromatogram of U-1163………………………..140 Fig. 5- 8 15N HS-SPME GC-IRMS chromatogram of U-1163………………………..141 Fig. 5- 9 Tree diagram for 13C, 15N of methamphetamine in 11 waste urine samples fromdrug abuser due to Euclidean distance statistic analysis and five groups were divided at linkage distance 1.50………………………………………..141 Fig. 5- 10□□13C, □15N isotope fingerprint of 11 controlled drug standards……………142 Fig. 5- 11 One way ANOVA analysis results of 3 methamphetamines with different source for □13C and □15N …………………………………………………...142 Fig. 5- 12 One way ANOVA analysis results of 2 ketamines with different source for□□13C and □15N ……………………………………………………………..143 Fig. 5- 13 □13C, □15N isotope fingerprint of 3 methamphetamine standards and 11 methamphetamine contents in urine sample from drug abuser……………143 Fig. 5- 14 One way ANOVA results of □13C and □15N of 3 methamphetamines standards from different sources and 11 methamphetamines in urine sample…………………………………………………………………….144 Table 1- 1 Relative abundances of naturally occurring isotopes of elements commonly analyzed by IRMS………………………………………………………… .18 Table1- 2 Standard deviation of mean □13C value (n=10) of CO2 reference On/Off test ………………………………………………………………………….18 Table1- 3 Standard deviation of mean □13C value (n=10) of C-13, C-14, C-15 for GC-IRMS analysis of FID test sample……………………………………...19 Table 2- 1 Source information and □13C values of 54 organic samples ………………43 Table 2- 2 Source information and □13C values of component in 20 industrial wastes offered by EAL…………………………………………………………….45 Table 2- 3 3 set of GC-IRMS methods were used for determination of □13C value of 54 organic solvents…………………………………………………………….47 Table 2- 4 43 identified components via NIST 98 in 40 industrial wastes from GC-MS TIC chemical fingerprint..…………………………………………………48 Table 2- 5 Contribution of 43 components in industrial waste to factor1 and factor 2 for factor analysis………………………………………………………………50 Table 3- 1 Test results of 20 samples from pollution site and surrounding area……….79 Table 3- 2 Concentrations (□g/ml) and □13C value (‰) for chlorinated ethylene from monitoring well in pollution site and surrounding area……………………..80 Table 4- 1 GPS coordinates, water content and TOC of 27 sediments samples from Kaohsiung harbor………………………………………………………..113 Table 4- 2 Recovery (%) of 16 PAHs in sand blank after each purification step…......114 Table 4- 3 The retention times order, selected qualifier and quantifier ions (m/z) of 16 PAHs and 6 Biomarkers…………………………………………………115 Table 4- 4 Identification results of 16 PAHs and 5 Biomarkers in six sediments samples (M-1~6) with GC-MS…………………………………………………...116 Table 4- 5 16 PAHs contents and 6 Biomarker of seventeen sediments samples from Kaohsiung harbor………………………………………………………..117 Table 4- 6 □13C value of 16 PAHs in eleven sediments samples from Kaohsiung harbor……………………………………………………………………120 Table 4- 7 Source apportionment of 16 PAHs in sediments for Kaohsiung harbor by specific PAHs contents ratio due to Figure 5 procedure………………… 122 Table 4- 8 Differentiation of 16 PAHs in eleven sediments samples with One way ANOVA at 95% confidential interval…………………………………….123 Table 5- 1 Physical property, chemical structure and abbreviation of 8 controlled drugs…145 Table 5- 2 □13C and □15N values of 11 controlled drug standards from different source….146 Table 5- 3 □13C and□□15N values of 11 urine samples from drug abuser……………...146

    T.C. Schmidt, L. Zwank, M. Elsner, M. Berg, R.U. Meckenstock, S.B. Haderlein, Anal. Bioanal. Chem., 2004, 378, 283-300
    W. Meier-Augenstein, J. Chromatogr., A, 1999, 842, 351–371
    S. Benson, C. Lennard, P. Maynard, and C. Roux., Forensic Sci. Int., 2006, 157, 1-22
    C. Cordella, I. Moussa, A.C. Martel, N. Sbirrazzuoli, and L.L. Cuvelier. J. Agric. Food Chem., 2002, 50, 1751
    S.D. Kelly, C. Rhodes, J.H. Lofthouse, D. Anderson, C.E. Burwood, M.J. Dennis, and P. Brereton. J. Agric. Food Chem. 2003, 51, 1801-1806.
    N. Kurashima, Y. Makino, Anal. Chem. 2004, 76, 4233-4236.
    M. Desage, R. Guilluy, Anal. Chim. Acta,1991, 247, 249-254.
    E. M. Galimov, V. S. Sevastyanov, E. V. ulbachevskaya and A. A. Golyavin. Rapid Commun. Mass Spectrom., 2005, 19, 1213-1216
    Shackleton CHL, Phillips A, Chang T, Li Y., Steroids, 1997, 62, 379-387
    R. Aguilera, M. Becchi, J. Mass Spectrom. 1996, 31,169 -176.
    OMalley, V. P.; Abrajano, T. A.; Hellou,J. Environ. Sci. Technol. 1996, 30, 634-639
    OMalley, V. P.; Burke, R. A. Schlotzhauer, W. S. Org. Geochem. 1997, 27, 567-581
    OMalley, V. P.; Abrajano, T. A.; Hellou,J. Org. Geochem. 1994, 21, 809-822
    R. U. Meckenstocka, B. Moraschb, C. Grieblera, and H. H. Richnowc., J. Contam. Hydrol. 2004, 75, 215-255.
    B. S. Lollar, G. F. Slater, B. Sleep, M. Witt, G. M. Klecka, M. Harkness, and J. Spivack. Environ. Sci. Technol.,2001, 35, 261-269.
    D. Hunkeler, Environ. Sci. Technol. , 2002, 36, 3378-3384.
    D. Hunkeler, J. Contam. Hydrol. , 2004, 74, 265-282.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE