簡易檢索 / 詳目顯示

研究生: 秦伊瑩
Yi-Ying Chin
論文名稱: Spin Accumulation from Ballistic Regime to Impurity-Dominated Regime
指導教授: 牟中瑜
Chung-Yu Mou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 74
中文關鍵詞: spin accumulationRashba spin-orbit interaction
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The purpose of this thesis is to explain the origin of the spin accumulation. The non-equilibrium transportation of the
    two-dimensional electron gas through a narrow channel is
    investigated under the influence of the Rashba spin-orbit
    interaction. We discuss the effect with modeling impurities by randomly distributed isotropic short-range potentials. To analyze numerically, we will construct the system in lattice points in the y direction. We firstly derive the correction due to the existence of the impurities and then show the spin distribution under the electron-impurity scattering. By introducing suitable lifetime in the Green's function, the spin distribution can be calculated from the ballistic regime to the diffusive regime. We will derive the continuity equation of spin to clarify the origin of the spin accumulation. It is shown that the spin accumulation is a combined effect of the spin current and disorders. Furthermore, we will consider other interactions which may be important to the system. We will discuss the effect of spin-spin interaction, screened Coulomb potential, and on-site u. Because those interactions are too hard to be exactly solved, we will consider these interactions by way of mean-field theory. It indicates that the inclusion of ferromagnetic spin-spin interaction increases the spin accumulation.


    1.Introdution 2.Spin-orbit interaction in 2DEG system 2.1 Spin-orbit interaction in ballistic regime 2.2 Symmetry properties of the system 2.3 Non-equilibrium collective behavior 2.4 From ballistic regime to impurity-dominated regime 2.5 Mean-field theory 2.6 Dresselhaus spin-orbit interaction 3.Conclusion A.Continuity equation of spin

    1.D. Grundler, ibid. 84 6074 (2000)
    2.M. I. Dyakonov and V. I. Perel, Phys. Lett. 35A 459(1971)
    3.Y. K. Kato et al., Science 306, 1910(2004)
    4.J. Sinova et al., Phys. Rev. Lett. 94, 047204(2005)
    5.S. Datta and B. Das, Appl. Phy. Lett. 56, 665(1990)
    6.M. Onoda and N. Nagaosa, Phys. Rev. B 72, 081301(2005)
    7.V. K. Dugaev et al., Superlatt. Microstr. 16, 413(1994)
    8.H.U. Jalabert et al., Chaos 3, 665(1993)
    9.R. Blumel, U. Smilansky, Phys. Rev. Lett. 60, 477(1988)
    10.Yu. L. Bychkov and E. I. Rashba, J.Phys. C 17 6093(1984)
    11.Iunren Shi et al., Phys. Rev. Lett. 96 076604(2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE