簡易檢索 / 詳目顯示

研究生: 黃懋霖
Huang, Mao-Lin
論文名稱: High k oxide-InGaAs Heterostructures: Interface properties and Energy Band Parameters
高介電常數氧化物-鉮化銦鎵異質結構:界面性質與能帶參數
指導教授: 洪銘輝
Hong, Minghwei
郭瑞年
Kwo, J. Raynien
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 104
中文關鍵詞: 原子層沉積鉮化銦鎵高介電常數氧化物界面能帶參數
外文關鍵詞: Atomic layer deposition, InGaAs, High k oxide, Interface, Energy band parameters
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋁(Al2O3)與氧化鉿(HfO2)利用原子層沉積技術成長於不同銦比例的鉮化銦鎵(InGaAs)化合物半導體表面。已曝露於空氣中的鉮化銦鎵,不需經任何表面處理,既可得到良好電性的氧化物-鉮化銦異質接面,如低漏電流特性(10-7-10-9 A/cm2)與低界面缺陷態密度(約1012cm-2eV-1)。本實驗利用高解析光電子能譜儀與高解析電子顯微鏡進行界面化學反應與原子結構的特性研究,利用同步輻射光源與氬氣離子蝕刻達到高精度的化學成分深度分析,得知在界面處沒有殘留的氧化鉮。在已曝露於空氣中的鉮化銦鎵,其表面生成的氧化鉮在原子層沉積氧化鋁與氧化鉿的過程中被完全移除,此化學反應已在電容-電壓量測中被證實為鉮化銦鎵表面費米能階沒有被釘紮(Fermi Level unpinning)的關鍵因素。由高解析電子顯微鏡觀察得到非結晶的氧化物與半導體之間為一原子級平整的界面,但經由高解析光電子能譜儀的分析,仍殘留少量的氧化鎵與氧化銦。
    本研究成長氧化鉿於53%銦的鉮化銦鎵表面,成功達成一奈米厚的等效電容厚度(與二氧化矽相比)的電容元件,關鍵在分子束磊晶成長高品質的半導體後,在送到原子層沉積腔體成長氧化物之前,減少鉮化銦鎵表面曝露於空氣中的時間,樣品傳送過程在十分鐘內即可完成。4.5奈米的氧化鉿於鉮化銦鎵上,在平帶電壓加一伏特的電壓下的漏電流約為3.8×10-4 A/cm2,僅約於同等效電容厚度一奈米厚的二氧化矽的億分之一。
    氧化物-鉮化銦異質接面相關的能帶參數如氧化物能隙、價電帶與導電帶的偏移量(offsets),已經由光電子能譜儀與反射式電子能量損失儀實驗得知。由反射式電子能量損失譜得知氧化鋁與氧化鉿的能隙分別為6.77與5.56 ±0.05 eV;價電帶偏移量可由光電子能譜分析得知,利用氧化物與半導體的能隙值與價電帶偏移量即可推算出導電帶的偏移量,此法得出之價電帶偏移量值與Fowler-Nordheim電子穿遂分析得出之數值非常相近。實驗得知,價電帶與導電帶的偏移量在不同銦含量的鉮化銦樣品皆分別大於1.5與2.5 eV。


    中文摘要 i Abstract ii Table captions iv Figure captions v Chapter 1 Introduction 1-1 III-V MOSFETs Beyond Si CMOS 1 1-2 High-□ Dielectrics on III–V InGaAs 2 1-3 Inversion-Channel InGaAs MOSFET 3 1-4 Organization of the thesis 6 Chapter 2 Experiment 14 2-1 Experimental procedures 14 2-2 Multi-chamber MBE/analytic UHV system 15 2-3 Molecular Beam Epitaxy (MBE) 15 2-4 Ex-situ Atomic Layer Deposited (ALD) oxide films 19 2-5 Electrical characteristics measurement 21 2-6 X-ray Photoelectron Spectroscopy (XPS) 23 2-7 Reflection Electron Energy Loss Spectroscopy (REELS) 34 2-8 High-Resolution Transmission Electron Microscopy 41 Chapter 3 ALD-Al2O3 and -HfO2 on InGaAs: Surface passivation 43 3-1 Introduction 43 3-2 Initial surface of InGaAs before ALD 44 3-3 Cross-sectional HR-TEM studies 49 3-4 The XPS studies of ALD-oxide/InxGa1-xAs 52 3-5 Air-exposure time of In0.53Ga0.47As prior ALD-HfO2 processes 57 3-6 Electrical properties of ALD-oxide/InxGa1-xAs heterostructures 59 3-7 Conclusions and discussion 64 Chapter 4 Energy Band Parameters of oxide/InGaAs heterostructures 68 4-1 Introduction 68 4-2 Oxide bandgaps 71 4-3 Valence band offsets of ALD-oxide/InxGa1-xAs 77 4-4 Conduction band offsets of ALD-oxide/InxGa1-xAs 84 4-5 Summary 88 Chapter 5 Summary 89 Chapter 6 Reference 92

    [1] S. M. Sze, Physics of Semiconductor Devices, 2nd edition, John Wiley & Sons (1985).
    [2] B. G. Streetman, and S. Banerjee, Solid-State Electronic Devices, 5th edition, Prentice Hall (2000).
    [3] International Technology Roadmap for Semiconductors 2007 edition: Emerging Research Devices.
    [4] M. W. Hong, J. R. Kwo, P.C. Tsai , Y. C. Chang, M. L. Huang , C. P. Chen, T. D. Lin, “III-V Metal-Oxide-Semiconductor Field Effect Transistors with High□□ Dielectrics”, Jpn. J. Appl. Phys., Part 1 46, 3167 (2007).
    [5] M. Hong, W. C. Lee, M. L. Huang, Y. C. Chang, T. D. Lin, Y. J. Lee, J. Kwo, C. H. Hsu, H. Y. Lee, “Defining new frontiers in electronic devices with high □ dielectrics and interfacial engineering”, Thin Solid Films 515, 5581 (2007).
    [6] M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W.-Y. Hwang, and L.W. Tu, “Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces”, J. Cryst. Growth 175, 422 (1997).
    [7] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, R. L. Masaitis, A. M. Sergent, “Passivation of GaAs using (Ga2O3)1-x(Gd2O3)x, 0≦x≦1.0 films”, Appl. Phys. Lett. 75, 1116 (1999).
    [8] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, A. M. Sergent, “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation”, Science 283, 1897 (1999).
    [9] J. Kwo, M. Hong, B. Busch, D. A. Muller, Y. J. Chabal, A. R. Kortan, J. P. Mannaerts, B. Yang, P. Ye, H. Gossmann, A. M. Sergent, K. K. Ng, J. Bude, W. H. Schulte, E. Garfunkel, T. Gustafsson, “Advances in high □ gate dielectrics for Si and III-V semiconductors”, J. Cryst. Growth 251, 645 (2003).
    [10] F. Ren, M. Hong, W.S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, Y. K. Chen, A. Y. Cho, IEEE International Electron Devices Meeting, “Enhancement-Mode p-channel GaAs MOSFETs on Semi-Insulating Substrates”, IEDM Tech. Dig. 943 (1996).
    [11] F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, A.Y. Cho, “Demonstration of Enhancement-Mode p- and n-Channel GaAs MOSFETs with Ga2O3(Gd2O3) as Gate Oxide”, Solid-State Electron. 41 (11), 1751 (1997).
    [12] Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen, A. Y. Cho, “Advances in GaAs MOSFET’s using Ga2O3(Gd2O3) as Gate Oxide”, Mater. Res. Soc. Symp. Proc. 573, 219 (1999).
    [13] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. -J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, J. Bude, “GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition”, Appl. Phys. Lett. 83, 180 (2003).
    [14] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3”, Appl. Phys. Lett. 87, 252104 (2005).
    [15] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu, M. Hong, “Energy-band parameters of atomic-layer-deposition Al2O3-InGaAs heterostructure”, Appl. Phys. Lett. 89, 012903 (2006).
    [16] Y. C. Chang, M. L. Huang, K. Y. Lee, Y.J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters”, Appl. Phys. Lett. 92, 072901 (2008).
    [17] K. Y. Lee, Y. J. Lee, P. Chang, M. L. Huang, Y. C. Chang, M. Hong, J. Kwo, “Achieving 1 nm capacitive effective thickness in atomic layer deposited HfO2 on In0.53Ga0.47As”, Appl. Phys. Lett. 92, 252908 (2008).
    [18] Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, P. D. Ye, IEEE International Electron Devices Meeting, “High Performance submicron inversion-type enhancement -mode InGaAs MOSFETs with ALD Al2O3, HfO2, and HfAlO as gate dielectrics”, IEDM Tech. Dig. 637 (2007).
    [19] D.Y. Noh, Y. Hwu, H.K. Kim, M. Hong, “X-ray-scattering studies of the interfacial structure of Au/GaAs”, Phys. Rev. B 51, 4441 (1995).
    [20] M. Hong, M.A. Marcus, J. Kwo, J.P. Mannaerts, A.M. Sergent, L.J. Chou, K.C. Hsieh, K.Y. Cheng, “Structural properties of Ga2O3(Gd2O3)/GaAs interfaces”, J. Vac. Sci. Technol. B, 16, 1395 (1998).
    [21] J. Kwo, D.W. Murphy, M. Hong, J.P. Mannaerts, R.L. Opila, R.L. Masaitis, A.M. Sergent, “Passivation of GaAs using gallium-gadolinium oxides”, J. Vac. Sci. Technol. B 17, 1294 (1999).
    [22] M. Hong, Z.H. Lu, J. Kwo, A.R. Kortan, J.P. Mannaerts, J.J. Krajewski, K.C. Hsieh, L.J. Chou, K.Y. Cheng, “Initial growth of Ga2O3(Gd2O3) on GaAs: Key to the attainment of a low interfacial density of states”, Appl. Phys. Lett. 76, 312 (2000).
    [23] K. H. Shiu, C. H. Chiang, Y. J. Lee, W. C. Lee, P. Chang, L. T. Tung, M. Hong, J. Kwo, W. Tsai, “Oxide scalability in Al2O3/Ga2O3(Gd2O3)/In0.20Ga0.80As/GaAs heterostructures”, J. Vac. Sci. Technol. B 26, 1132 (2008).
    [24] K.H. Shiu, T.H. Chiang, P. Chang, L.T. Tung, M. Hong, J. Kwo, W. Tsai, “1 nm equivalent oxide thickness in Ga2O3(Gd2O3)-In0.2Ga0.8As MOSCap”, Appl. Phys. Lett. 92, 172904 (2008).
    [25] Y. L. Huang, P. Chang, Z.K. Yang, Y.J. Lee, H.Y. Lee, H.J. Liu, J. Kwo, J.P. Mannaerts, M. Hong, “Thermodynamic stability of Ga2O3(Gd2O3)/GaAs interface”, Appl. Phys. Lett. 86, 191905 (2005).
    [26] C. P. Chen, Y. J. Lee, Y. C. Chang, Z. K. Yang, M. Hong, J. Kwo, H. Y. Lee, T. S. Lay, “Structural and electrical characteristics of Ga2O3(Gd2O3)/GaAs under high temperature annealing”, J. Appl. Phys. 100, 104502 (2006).
    [27] M. L. Huang, Y. C. Chang, Y. H. Chang, T. D. Lin, J. Kwo, M. Hong, “Energy-band parameters of atomic layer deposited Al2O3 and HfO2 on InxGa1-xAs”, Appl. Phys. Lett. 94, 052106 (2009).
    [28] J. Kwo, M. Hong, J.P. Mannaerts, Y.D. Wu, Q.Y. Lee, B. Yang, T. Gustafsson, “Fundamental study and oxide reliability of the MBE grown Ga2-xGdxO3 dielectrics for compound semiconductor MOSFET’s”, Mater. Res. Soc. Symp. Proc. 811, E1.12 (2004).
    [29] S. Koveshnikov, W. Tsai, I. Ok, J.C. Lee, V. Torkanov, M. Yakimov, S. Oktyabrsky, “Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer”, Appl. Phys. Lett. 88, 022106 (2006).
    [30] N. Goel, P. Majhi, C.O. Chui, W. Tsai, D. Choi, J.S. Harris, “InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer deposition”, Appl. Phys. Lett. 89, 163517 (2006).
    [31] Y. Xuan, H.C. Lin, P.D. Ye, “Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High-□ Dielectrics”, IEEE Trans. Electron Devices 54, 1811 (2007).
    [32] T.D. Lin, H.C. Chiu, P. Chang, L.T. Tung, C.P. Chen, M. Hong, J. Kwo, W. Tsai, Y.C. Wang, “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics”, Appl. Phys. Lett. 93, 033516 (2008).
    [33] Y. Xuan, Y.Q. Wu, P.D. Ye, “High-Performance Inversion-Type Enhancement -Mode InGaAs MOSFET With Maximum Drain Current Exceeding 1 A/mm”, IEEE Electron Device Lett. 29, 294 (2008).
    [34] H. C. Chiu, T. D. Lin, P. Chang, W. C. Lee, C. H. Chiang, J. Kwo, Y. S. Lin, Shawn S. H. Hsu, W. Tsai, and M. Hong, “Self-aligned Inversion Channel In0.53Ga0.47As N-MOSFETs with ALD-Al2O3 and MBE-Al2O3/Ga2O3(Gd2O3) as Gate Dielectrics”, International Symposium on VLSI Technology, Systems and Applications, 141 (2009) .
    [35] H.C. Chiu, L.T. Tung, Y.H. Chang, Y.J. Lee, C.C. Chang, J. Kwo, M. Hong, “Achieving a low interfacial density of states in atomic layer deposited Al2O3 on In0.53Ga0.47As”, Appl. Phys. Lett. 93, 202903 (2008).
    [36] F. Ren, J.M. Kuo, M. Hong, W.S. Hobson, J.R. Lothian, J. Lin, W.S. Tseng, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, A.Y. Cho, “Ga2O3(Gd2O3)-InGaAs enhancement-mode n-channel MOSFETs”, IEEE Electron Device Lett. 19 (8), 309 (1998).
    [37] R.J.W. Hill, D.A.J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, L.G. Thayne, “Enhancement-Mode GaAs MOSFETs with In0.3Ga0.7As channel, a mobility of over 5000cm2/Vs and transconductance of over 475uS/□m”, IEEE Electron Device Lett. 28, 1080 (2007).
    [38] Y. Sun, E.W. Kiewra, S.J. Koester, N. Ruiz, A. Callegari, K.E. Fogel, D.K. Sadana, J. Fompeyrine, D.J. Webb, J.P. Locquet, M. Sousa, R. Germann, K.T. Shiu, S.R. Forrest, “Enhancement-Mode Buried-Channel In0.7Ga0.3As /In0.52Al0.48As MOSFETs with high-□ gate dielectrics”, IEEE Electron Device Lett. 28, 473 (2007).
    [39] J.P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D.K. Sadana, G. Shahidi, D.J. Webb, J. Fompeyrine, R. Germann, C. Rossel, C. Marchiori, “Inversion mode n-channel GaAs field effect transistor with high-k-metal gate”, Appl. Phys. Lett. 92, 153508 (2008).
    [40] H.C. Chin, M. Zhu, G.S. Samudra, Y.C. Yeo, “n-Channel GaAs MOSFET with TaN/HfAlO Gate Stack Formed Using In Situ Vacuum Anneal and Silane Passivation”, J. Electrochem. Soc. 155, H464 (2008).
    [41] C.P. Chen, T.D. Lin, Y.J. Lee, Y.C. Chang, M. Hong, J. Kwo, “Self-aligned inversion n-channel In0.2Ga0.8As/GaAs metal–oxide–semiconductor field-effect -transistors with TiN gate and Ga2O3(Gd2O3) dielectric”, Solid-State Electron. 52, 1615 (2008).
    [42] Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, H.S. Tsai, J. Kwo, J.J. Krajewski, Y.K. Chen, A.Y. Cho, “Ga2O3(Gd2O3)/GaAs power MOSFETs”, Electron. Lett. 35, 667 (1999).
    [43] M. Hong, J.N. Baillargeon, J. Kwo, J.P. Mannaerts, A.Y. Cho, “First Demonstration of GaAs CMOS”, Proc. 2000 IEEE Int. Symp. Compd. Semicond. 345 (2000).
    [44] Molecular beam epitaxy, edited by Alfred Cho, American Institute of Physics, New York (1994).
    [45] M. A. Herman and H. Sitter, Molecular beam epitaxy: fundamentals and current status, Springer-Verlag, Berlin (1989).
    [46] S. M. Sze, High speed semiconductor devices, Wiley, New York (1990).
    [47] Chang and Francis Kai, GaAs high-speed devices: physics, technology, and circuit applications, Wiley, New York (1994).
    [48] Handbook of electronic and photonic materials, edited by Safa Kasap and Peter Capper, Springer, New York (2006).
    [49] S.-L. Weng, C. Webb. J. N. Eakstein, “Growth condition studies of pseudomorphic InGaAs/GaAs strained layer structures and InGaAs/AlGaAs high electron mobility transistor layer properties”, J. Vac. Sci. Technol. B 7, 361 (1989)
    [50] Atomic Layer Epitaxy, edited by T. Suntola and M. Simpson, Blackie and Son, London (1990).
    [51] S. M. George, A. W. Ott, and J. W. Klaus, “Surface Chemistry for Atomic Layer Growth”, J. Phys. Chem. 100, 13121 (1996)
    [52] Rikka L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process”, J. Appl. Phys. 97, 121301 (2005)
    [53] M. Ritala and M. Leskelä, in Handbook of Thin Film Materials, edited by H. S. Nalwa (Academic, San Diego, 2002), Vol. 1, pp. 103-159.
    [54] K. Mistry et al., “A 45nm Logic Technology with High-k + Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging”, Tech. Dig. – Int. Electron Devices Meet. 2007, pp. 247-250; see also at http://www.intel.com/technology/45nm/index.htm#
    [55] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), and references therein.
    [56] Dieter. K. Schroder, Semiconductor Material and Device Characterization, 2nd edition (Wiley, New York, 1998)
    [57] Stefan Hüfner, Photoelectron Spectroscopy: Principles and Applications, (Springer-Verlag, Berlin Heidelberg, 1995)
    [58] Buddy D. Ratner and David G. Castner, in Surface Analysis-The Principal Techniques, edited by John C. Vickerman (Wiley, New York, 1997), Ch. 3., pp. 43-98.
    [59] B. K. Agarwal, X-Ray Spectroscopy, 2nd edition, (Springer-Verlag, Berlin Heidelberg, 1991)
    [60] Tery L. Bar, Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy, (CRC press, 1994)
    [61] G. Margaritondo, “Interface states at semiconductor junctions”, Rep. Prog. Phys. 62, 765 (1999).
    [62] C. S. Fadley, “Basic Concepts of X-ray Photoelectron Spectroscopy”, in Electron Spectroscopy: Theory, Techniques and Applications, edited by C. R. Brundle, A. D. Baker, (Academic, New York, 1978), Vol. 1, pp. 1-156.
    [63] F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface”, Phys. Rev. B 38, 6084 (1988).
    [64] R. L. Opila and Joseph Eng Jr., “Thin films and interfaces in microelectronics: composition and chemistry as function of depth”, Prog. Surf. Sci. 69, 125 (2002)
    [65] A. C. Diebold, D. Venables, Y. Chabal, D. Muller, M. Weldon, and E. Garfunkel, “Characterization and production metrology of thin transistor gate oxide films”, Mater. Sci. Semi. Processing 2, 103 (1999).
    [66] K. Hirose, H. Nohira, K. Azuma, and T. Hattori, “Photoelectron spectroscopy studies of SiO2-Si interfaces”, Prog. Surf. Sci. 82, 3 (2007).
    [67] Practical Surface Analysis, 2nd edition, Vol. 1, Auger and X-ray Photoelectron Spectroscopy, edited by D. Briggs and M. P. Seah, Wiley, New York (1990).
    [68] M. P. Seah and D. P. Dench, “Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids”, Surf. Interface Anal. 1, 2 (1979)
    [69] CRC handbook of chemistry and physics, 83rd edition, edited by D. R. Lide, CRC Press (2002)
    [70] http://www.webelements.com/compounds/
    [71] Handbook on Synchrotron Radiation, Vol. 1a,, edited by Ernst-Eckhard Koch, North-Holland, Amsterdam (1983)
    [72] http://www.nsrrc.org.tw/english/img/pdf/info.pdf
    [73] R. F. Egerton, Electron Energy-Loss Spectrscopy, 2nd edition, Plenum, New York ,1996.
    [74] G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, 2nd edition, VCH, Weinheim, 1985.
    [75] Hans Lüth, Surfaces and Interfaces of Solid Materials, 3rd editions, (Springer-Verlag, Berlin Heidelberg, 1995)
    [76] L. A. J. Garvie, P. Rez, J. R. Alvarez, and P. R. Buseck, “Interband transitions of crystalline and amorphous SiO2: An electron energy-loss spectroscopy (EELS) study of the low-loss region”, Solid State Comm. 106, 303 (1998)
    [77] R. Reiche, F. Yubero, J. P. Espinós, and A. R. González-Elipe, “Structure, microstructure and electronic characterisation of the Al2O3-SiO2 interface by electron spectroscopies”, Surf. Sci. 457, 199 (2000)
    [78] H. Jin, S. K. Oh, H. J. Kang, S. Tougaard, “Electronic properties of ultrathin HfO2, Al2O3, and Hf–Al–O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra”, J. Appl. Phys. 100, 083713 (2006)
    [79] H. Jin, S. K. Oh, H. J. Kang, “Electronic structure of ultrathin Si oxynitrides”, Surf. Interface Anal. 38, 1564 (2006)
    [80] D. B. Williams and C. B. Carter, Transmission Electron Microscopy: a textbook for materials science, Plenum Press, New York (1996)
    [81] D. Shindo and K. Hiraga, High-Resolution Electron Microscopy for Materials Science, Springer-Verlag, Tokyo (1998)
    [82] High Dielectric Constant Materials: VLSI MOSFET Applications,, edited by H. R. Huff and D. G. Gilmer, Amsterdam (1983), Springer-Verlag, Berlin (2005)
    [83] C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, and M. Hong, “Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As”, Appl. Phys. Lett. 89, 242911 (2006).
    [84] T. Yang, Y. Xuan,D. Zemlyanov, T. Shen, Y. Q. Wu, J. M. Woodall, P. D. Ye, F. S. Aguiree-Tostado, M. Milojevic, S. McDonnell, and R. M. Wallace, “Interface studies of GaAs metal-oxide-semiconductor structures using atomic-layer- deposited HfO2/Al2O3 nanolaminate gate dielectric”, Appl. Phys. Lett. 91, 142122 (2007).
    [85] S. J. Koester, E. W. Kiewra, Y. Sun, D. A. Neumayer, J. A. Ott, M. Copel, and D. K. Sadana, “Evidence of electron and hole inversion in GaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectrics and a-Si/SiO2 interlayers”, Appl. Phys. Lett. 89, 042104 (2006).
    [86] J. Ok, H. Kim, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, and J. C. Lee, “Temperature effects of Si interface passivation layer deposition on high-k III-V metal-oxide-semiconductor characteristics”, Appl. Phys. Lett. 91, 132104 (2007).
    [87] J.-F. Fan, H. Oigawa, and Y. Nannichi, “The Effect of (NH4)2S Treatment on the Interface Characteristics of GaAs MIS Structures, Jap. J. Appl. Phys. 27, 1331 (1988).
    [88] J. S. Herman and F. L. Terry, Jr., “Hydrogen sulfide plasma passivation of gallium arsenide”, Appl. Phys. Lett. 60, 716 (1992).
    [89] B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs”, Appl. Phys. Lett. 51, 2022 (1987).
    [90] H. Xia, W. N. Lennard, L. J. Huang, W. M. Lau, J.-M. Baribeau, and D. Landheer, ” Sulphur diffusion at the Si/GaAs(110) interface”, J. Appl. Phys. 80, 4354 (1996).
    [91] J.S. Foord and E.T. Fitzgerald, ”The adsorption and thermal decomposition of hydrogen sulphide on GaAs(100)”, Surface Science 306, 29 (1944)
    [92] W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, “Unified defect model and beyond”, J. Vac. Sci. Technol. 17, 1019 (1980).
    [93] Physics and Chemistry of III–V Compound Semiconductor Interfaces, edited by C. W. Wilmsen (Plenum, New York, 1985), and references therein.
    [94] M. Dal Colle, R. Bertoncello, E. Tondello, “Quantitative ARXPS depth profiling characterisation of native oxides grown on In0.53Ga0.47As(100) single crystals”, J. Electron Spectrosc. Relat. Phenom.70, 129 (1994)
    [95] G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, “Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers”, Phys. Rev. B 49, 11159 (1994).
    [96] D.A. Allwood, R.T. Carline, N.J. Mason, C. Pickering, B.K. Tanner, P.J. Walker, “Characterization of oxide layers on GaAs substrate”, Thin Solid Films 364, 33 (2000)
    [97] C. M. Demanet and M. A. Marais, “A multilayer model for GaAs oxides formed at room temperature in air as deduced from an XPS analysis”, Surf. Interf. Anal. 7, 13 (1985)
    [98] A. J. Spring Thorpe, S. J. Ingrey, B. Emmerstorfer, P. Mandeville, and W. T. Moore, “Measurement of GaAs surface oxide desorption temperatures”, Appl. Phys. Lett. 50, 77 (1987)
    [99] S. I. J. Ingrey, W. M. Lau and R. N. S. Sodhi, “Characterization of surface oxides and oxide desorption on InGaAs”, J. Vac. Sci. Technol. A 7, 1554 (1989)
    [100] A. M. Green and W. E. Spicer, “Do we need a new methodology for GaAs passivation? ”, J. Vac. Sci. Technol. A 11, 1061 (1993).
    [101] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition”, Appl. Phys. Lett. 86, 152904 (2005).
    [102] B. K. Tanner, D. A. Allwood, and N. J. Mason, “Kinetics of native oxide film growth on epiready GaAs”, Mater. Sci. Eng. B. 80, 99 (2001).
    [103] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, and T. Furukawa, “HfO2 and HfAlO for CMOS: Thermal Stability and Current Transport”, Tech. Dig. – Int. Electron Devices Meet. 2001, p. 463.
    [104] M. Passlack, M. Hong, J. P. Mannaerts, “C-V and G-V characterization of in-situ fabricated Ga2O3-GaAs interfaces for inversion accumulation device and surface passivation applications”, Solid-State Electron. 45, 373 (1996).
    [105] K. Martens, W. Wang, K. De Keersmaecker, G. Borghs, G. Groeseneken, and H. Maes, “Impact of weak Fermi-level pinning on the correct interpretation of III-V MOS C-V and G-V characteristics”, Microelectronic. Eng. 84, 2146 (2007).
    [106] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. Dekeersmaecker, “A Reiable Approach to Charge-Pumping Measurements in MOS Transistors”, IEEE Trans. Electron Devices 31, 42 (1984).
    [107] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-□ gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 (2001).
    [108] J. Robertson, and B. Falabretti, “Band offsets of high K gate oxides on III-V semiconductors”, J. Appl. Phys. 100, 014111 (2006).
    [109] International Technology Roadmap for Semiconductors,:1999 (Semiconductor Industry Association, San Jose, CA, 1999) p.105.
    [110] D. G. Schlom and J. H. Haeni, “A Thermodynamic Approach to Selecting Alternative Gate Dielectrics”, Mater. Res. Soc. Bull. 27, 198 (2002) and references therein.
    [111] J. K. Yang, and H. H. Park, “Controlled band offset in (Gd2O3)1–x(SiO2)x (0≦x≦1)/n–GaAs (001) structure”, Appl. Phys. Lett. 87, 022104 (2005).
    [112] Y. Liang, J. Curless, and D. McCready, “Band alignment at epitaxial SrTiO3-GaAs(001) heterojunction”, Appl. Phys. Lett. 86, 082905 (2005).
    [113] V. V. Afanas’eV and A. Stesmans, “]Internal Photoemission at interfaces of high-k insulators with semiconductor and metals”, J. Appl. Phys. 102, 081301 (2007).
    [114] T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung, and D. J. Huang, “Energy-band parameters at the GaAs– and GaN–Ga2O3(Gd2O3) interfaces”, Solid-State Electron. 45, 1679 (2001).
    [115] H. Jin, S. K. Oh, H. J. Kang, S. Tougaard, “Electronic properties of ultrathin HfO2, Al2O3, and Hf–Al–O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra”, J. Appl. Phys. 100, 083713 (2006).
    [116] Winfried Mönch, “On the electric-dipole contribution to the valence-band offsets in semiconductor-oxide heterostructures”, Appl. Phys. Lett. 91, 042117 (2007).
    [117] N. V. Nguyen, Oleg A. Kirillov, W. Jiang, Wenyong Wang, John S. Suehle, P. D. Ye, Y. Xuan, N. Goel, K.-W. Choi, Willman Tsai, and S. Sayan, “Band offsets of atomic-layer-deposited Al2O3 on GaAs and the effects of surface treatment”, Appl. Phys. Lett. 93, 082105 (2008).
    [118] Properties of Lattice-Matched and Strained Indium Gallium Arsenide, edited by B. L. Weiss (Institution of Electrical Engineers, London, 1993)
    [119] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides”, Nature 399, 758 (1999)
    [120] H. Jin, S. K. Oh, and H. J. Kang, “Electronic structure of ultrathin Si oxynitrides”, Surf. Interface Anal. 38, 1564 (2006).
    [121] D.-Y. Cho, K.-S. Park, B.-H. Choi, S.-J. Oh, Y. J. Chang, D. H. Kim, T. W. Noh, R. Jung, J.-C. Lee, and S. D. Bu, “Control of silicidation in HfO2/Si(100) interfaces”, Appl. Phys. Lett. 86, 041913 (2005)
    [122] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).
    [123] L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy”, Phys. Rev. B 9, 600 (1974).
    [124] P. W. Peacock and J. Robertson, “Band offsets and Schottky beights of high dielectric constant oxides”, J. Appl. Phys 92, 4712 (2002).
    [125] E. Bersch, S. Rangan, R. A. Bartynski, E. Garfunkel, and E. Vescovo, ” Band offsets of ultrathin high-□ oxide films with Si”, Phys. Rev. B 78, 085114 (2008).
    [126] J. Singh, Properties of Lattice-Matched and Strained Indium Gallium Arsenide, edited by B. L. Weiss (Institution of Electrical Engineers, London, 1993), Ch. 3.1, p. 67.
    [127] V. S. Fomenko, Handbook of Thermoionic Properties, Plenum, New York, 1996.
    [128] G. Sjoblom, J. Westlinder, and J. Olsson, “Investigation of the thermal stability of reactively sputter-deposited TiN MOS gate electrodes”, IEEE Trans. Electron Devices 53, 2349 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE