簡易檢索 / 詳目顯示

研究生: 陳亭安
Chen, Tin-An
論文名稱: 透過複雜型社交網路探討具有隔離行為及疫苗效力的隨機傳染病模型
Study of a stochastic epidemic model with quarantine and vaccine efficacy on complex networks
指導教授: 李金龍
Li, Chin-Lung
口試委員: 張延彰
Chang, Yen-Chang
李俊憲
Li, Chun-Hsien
學位類別: 碩士
Master
系所名稱: 理學院 - 計算與建模科學研究所
Institute of Computational and Modeling Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 45
中文關鍵詞: 複雜型社交網路
外文關鍵詞: complex network
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳染病的防治是公共衛生領域中,相當重要的議題,隔離與疫苗接種
    是常見的防治方法。在本研究中,我們建構了一個具有隨機性的 SIQV 模
    型,此模型是基於傳統的 SIS 模型,並增加隔離與接種疫苗的人群,以呈
    現傳染病在這個防治措施下的感染人數變化情形。由於防治措施的效果受
    到人際交流的影響,我們也將人際網路納入模型中,由數學工具推導得知,
    當理論閾值 R0 < 1 時,疾病幾乎必然地滅絕; R0 > 1 且疾病死亡率 α = 0
    時,病毒會幾乎必然地持續存在。在數值計算中,我們利用各種參數、分
    群個數與閾值 R0 的不同,驗證理論的結果。另外,我們也利用數值模擬疾
    病死亡率的大小,探討疾病存在的可能情況。特別地,我們在模型加了一
    個特別的參數,提高防疫意識,各群會從可感染的人直接到被感染的人,
    加入此參數可以更符合現實社會。


    The prevention and control of infectious diseases are important issues in the field
    of public health. Quarantine and vaccination are common methods of prevention
    and control. In this thesis, we constructed a stochastic SIQV model based on the
    traditional SIS model, incorporating the populations of individuals undergoing
    quarantine and vaccination to investigate the changes in the number of infected
    individuals under these preventive measures. Since the effectiveness of these measures is influenced by interpersonal interactions, we also included a social network
    in the model. The theoretical results indicate that when the threshold value R0 < 1,
    the disease will become extinct almost surely. Moreover, the disease will persist
    almost surely if R0 > 1 and the infection-induced death rates α = 0. In numerical
    calculations, we study the various values of parameters, the classification of the individuals, and the threshold value R0 to verify our theoretical results. In addition,
    we also use numerical simulations to discuss the possibility of the existence of the
    disease when the infection-induced death rate is positive. We have added a special parameter to the model to enhance awareness of epidemic prevention. People
    will transition directly from being susceptible to being infected when exposed to
    infected individuals. By incorporating this parameter, the model can better reflect
    the reality of society.

    Acknowledgements 摘要 i 1 Introduction 1 2 Formulation for Epidemic Model 3 2.1 The Deterministic Epidemic Model 3 2.2 The Stochastic Epidemic Model 6 3 The Stochastic Mathematic Model 8 3.1 Preliminary 8 3.2 Existence of Positive Solution of the Disease 9 3.3 Extinction of the Disease 13 3.4 Persistence of the Disease 15 4 Numerical Simulations 24 4.1 Behavior of Stochastic Equation 24 4.2 Example of Extinction 24 4.3 Example of Persistance 26 4.4 Discuss the Disease with Different Value of α and k 29 5 Conclusion 36 References 37 Appendix

    1. S. Eubank, H. Guclu, V. Anil Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai,
    and N. Wang, “Modelling disease outbreaks in realistic urban social networks,” Nature,
    vol. 429, no. 6988, pp. 180–184, 2004.
    2. R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical review letters, vol. 86, no. 14, p. 3200, 2001.
    3. Y. Gang, Z. Tao, W. Jie, F. Zhong-Qian, and W. Bing-Hong, “Epidemic spread in weighted
    scale-free networks,” Chinese Physics Letters, vol. 22, no. 2, p. 510, 2005.
    4. Z. Dezso and A.-L. Barabási, “Halting viruses in scale-free networks,” ˝ Physical Review
    E, vol. 65, no. 5, p. 055103, 2002.
    5. A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science,
    vol. 286, no. 5439, pp. 509–512, 1999.
    6. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks:
    Structure and dynamics,” Physics reports, vol. 424, no. 4-5, pp. 175–308, 2006.
    7. S. Eubank, H. Guclu, V. Anil Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai,
    and N. Wang, “Modelling disease outbreaks in realistic urban social networks,” Nature,
    vol. 429, no. 6988, pp. 180–184, 2004.
    8. J. Jia, J. Ding, S. Liu, G. Liao, J. Li, B. Duan, G. Wang, and R. Zhang, “Modeling the
    control of covid-19: impact of policy interventions and meteorological factors,” arXiv
    preprint arXiv:2003.02985, 2020.
    9. S. P. Adhikari, S. Meng, Y.-J. Wu, Y.-P. Mao, R.-X. Ye, Q.-Z. Wang, C. Sun, S. Sylvia,
    S. Rozelle, H. Raat, et al., “Epidemiology, causes, clinical manifestation and diagnosis,
    prevention and control of coronavirus disease (covid-19) during the early outbreak period:
    a scoping review,” Infectious diseases of poverty, vol. 9, no. 1, pp. 1–12, 2020.
    10. H. Z. Nooh, R. H. Alshammary, J. M. Alenezy, N. H. Alrowaili, A. J. Alsharari, N. M.
    Alenzi, and H. E. Sabaa, “Public awareness of coronavirus in al-jouf region, saudi arabia,”
    Journal of Public Health, vol. 29, pp. 1107–1114, 2021.
    11. F. A. M. Abdel Fattah, K. A. Dahleez, A. H. H. Mohamed, M. K. Okour, and A. M. M.
    AL Alawi, “Public health awareness: knowledge, attitude and behaviors of the public on
    health risks during covid-19 pandemic in sultanate of oman,” Global Knowledge, Memory
    and Communication, vol. 71, no. 1/2, pp. 27–51, 2022.
    12. S. N. Orfan and A. H. Elmyar, “Public knowledge, practices and attitudes towards covid19 in afghanistan,” Public Health of Indonesia, vol. 6, no. 4, pp. 104–115, 2020.
    13. X.-B. Zhang and X.-H. Zhang, “The threshold of a deterministic and a stochastic siqs
    epidemic model with varying total population size,” Applied mathematical modelling,
    vol. 91, pp. 749–767, 2021.37
    14. C.-H. Li, “Dynamics of a network-based sis epidemic model with nonmonotone incidence
    rate,” Physica A: Statistical Mechanics and its Applications, vol. 427, pp. 234–243, 2015.
    15. R. Zhao, Q. Liu, and M. Sun, “Dynamical behavior of a stochastic siqs epidemic model
    on scale-free networks,” Journal of Applied Mathematics and Computing, vol. 68, no. 2,
    pp. 813–838, 2022.
    16. X. Mao, Stochastic differential equations and applications. Elsevier, 2007.
    17. U. Hassler et al., “Stochastic processes and calculus,” Springer Texts in Business and
    Economics ReDIF-Book, 2016.
    18. C. Chiarella, X.-Z. He, C. Sklibosios Nikitopoulos, C. Chiarella, X.-Z. He, and C. S.
    Nikitopoulos, “Ito's lemma and its applications,” Derivative Security Pricing: Techniques,
    Methods and Applications, pp. 111–143, 2015.
    19. P. E. Kloeden and E. Platen, “Numerical methods for stochastic differential equations,” in
    Nonlinear dynamics and stochastic mechanics, pp. 437–461, CRC Press, 2018.
    20. J. Blum, D. L. Hanson, and L. H. Koopmans, On the strong law of large numbers for a
    class of stochastic processes. Sandia Corporation, 1963.
    21. W. Hoeffding, “The strong law of large numbers for u-statistics.,” tech. rep., North Carolina State University. Dept. of Statistics, 1961.
    22. A. Lang, “Application of some of cauchy’s theorems to estimation of surface areas of
    leaves, needles and branches of plants, and light transmittance,” Agricultural and Forest
    Meteorology, vol. 55, no. 3-4, pp. 191–212, 1991.
    23. J. D. Dixon, “A brief proof of cauchy’s integral theorem,” Proceedings of the American
    Mathematical Society, vol. 29, no. 3, pp. 625–626, 1971.
    24. X. Mao, “Convergence rates of the truncated euler–maruyama method for stochastic
    differential equations,” Journal of Computational and Applied Mathematics, vol. 296,
    pp. 362–375, 2016.
    25. X. Mao and L. Szpruch, “Strong convergence rates for backward euler–maruyama method
    for non-linear dissipative-type stochastic differential equations with super-linear diffusion
    coefficients,” Stochastics An International Journal of Probability and Stochastic Processes, vol. 85, no. 1, pp. 144–171, 2013.
    26. G. Leobacher and M. Szölgyenyi, “Convergence of the euler–maruyama method for multidimensional sdes with discontinuous drift and degenerate diffusion coefficient,” Numerische Mathematik, vol. 138, pp. 219–239, 2018.

    QR CODE