簡易檢索 / 詳目顯示

研究生: 黃子倫
Wee,Tse-Luen
論文名稱: 螢光鑽石光譜特性之研究及應用
Spectroscopic characterization of fluorescent diamonds and their applications
指導教授: 張煥正
Chang,Huan-Cheng
倪其焜
Ni,Chi-Kun
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 100
中文關鍵詞: 螢光鑽石
外文關鍵詞: fluorescent diamond
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以線性及非線性光學系統探討鑽石中帶負電荷的「氮原子-空缺」缺陷中心〔記為 (N-V)─〕以及相關缺陷中心「氮原子-空缺-氮原子」缺陷中心〔記為 (NVN 或 H3〕的光譜性質研究。內容分為四大部分。
    第一部分以固態Nd-YAG奈秒雷射來進行雙光子掃描顯微影像。利用平板鋪膜方法製造光阻薄膜並旋鍍螢光小球,以及經過R6G染色的洋蔥表皮細胞進行雙光子掃描,可證明此奈米雷射顯微技術可到達0.5微米的解析度。適當使用奈秒雷射來攝取映像,可簡化操作過程,降低成本,對材料的映像顯微有多方面的優點。更因奈秒雷射能輕易製成波長可調,對作選擇性的映像顯微更方便快捷。 
    第二部分是利用超快飛秒雷射來進行 type Ib單晶合成鑽石的單光子(532nm)及雙光子(1064nm)激發之螢光光譜研究。合成單晶鑽石晶體經由能量3MeV以及40keV的氫離子束衝擊,接著以高溫攝氏八百度加熱(800℃)退火處理後,在晶格內部會產生很多(N-V)─缺陷中心,而形成紅色螢光鑽石。在以高能量離子束照射前,利用FTIR偵測合成鑽石晶體,藉由1344cm-1 特性峰來推算氮的含量約為100ppm左右,並於液態氮低溫中偵測其UV-VIS光譜,利用吸收光譜中NV的zero-phonon line(ZPL,637nm)強度估算其缺陷濃度約為25ppm。並經由雙光子激發照射,並與其他螢光材料經由相同實驗條件下作比較,估算其雙光子吸收截面積為σNV,TPA = (0.45±0.23) × 10-50 cm4⋅s/photon.
    第三部分是說明綠色螢光奈米鑽石(簡稱為gFNDs)的製備與做為生物標記應用的特性。利用473nm連續波藍光雷射來進行type Ia單晶天然鑽石的單光子螢光光譜研究,天然奈米鑽石晶體經由能量40keV的氦離子束或是3MeV的氫離子束衝擊及高溫(800℃)退火處理後,再測其螢光光譜,發現以藍光激發會放出綠色螢光。推論並證實奈米鑽石粉末經過相同的處理程序後,也會有高濃度的H3 center結構產生,而形成綠色螢光奈米鑽石,所發出的綠色螢光不會有光漂白及光閃爍的現象。在以高能量離子束照射前,利用FTIR偵測天然鑽石晶體,藉由1282cm-1 特性峰來推算氮的含量約為900ppm左右。並利用吸收光譜中H3的zero-phonon line(ZPL,503nm)強度計算,可以知道H3 density大約10ppm。我們進一步利用螢光奈米鑽石的化學性穩定、細胞毒性低之特性,利用穿透式白光及廣視野螢光顯微鏡系統,觀察綠色螢光奈米鑽石可以經由細胞吞噬(endocytosis)進入活HeLa細胞中。我們成功地在細胞內看到螢光奈米鑽石,並確認他們的位置是在細胞質而非細胞核。更進一步利用流式細胞儀進行綠色螢光奈米鑽石粒子定性定量及時間相依測量分析,以證明70nm的綠色螢光奈米鑽石可以做為新穎的奈米螢光標記。
    第四部分為利用405nm超快飛秒雷射針對 type Ia天然奈米鑽石顆粒作更進一步的光譜性質研究,在這個研究中,我們旋鍍 350nm type Ia 天然奈米鑽石在石英玻片上,經由掃瞄影像、光譜及生命期的測量,顯示其著稱的光學穩定性依舊明顯,且不因不同顆粒而有差別。而我們已知在type Ia 天然奈米鑽石顆粒中,同時存在少許(N-V)─缺陷中心以及H3缺陷中心,於是我們選擇利用拉伸指數數據擬合來分析其螢光生命期且得到很好的擬合曲線。


    Abstract
    The objective of this research is mainly talking about the linear and nonlinear experimental studies on spectroscopic properties of the nitrogen□vacancy□nitrogen (NVN) and nitrogen□vacancy (N-V)- defect centers in type Ia and Ib diamond, and their related applications in this report are presented in four parts.
    The first part, we report the application of a multi-kHz diode-laser-pumped Q-switched Nd:YAG laser operating at 1064 nm to obtain two-photon-excited fluorescence scanning images with photolithography prepared photoresist film, red fluorescent polystyrene beads, R6G-dyed onion skin and also type Ib single crystal diamond. With careful and properly chosen operating parameters, we do not observe damages to the samples after repeated scans. The spatial resolution achieved was about 0.5 micron.
    The second part shows experimental results of one-photon (532nm) and two-photon (1064nm) excited fluorescence spectra of the negative charged nitrogen –vacancy (N-V)□□ defect centers in type Ib diamond, and also the deduced results of the corresponding one-photon and two-photon absorption cross sections are reported. Comparing the normalized spectral shapes recorded from one-photon and two-photon excitations, they are very similar except the photoionization effect of neutral (N-V)0 centers which yield 575nm ZPL and the accompanied vibronic band were more obvious under much more intense 1064 nm excitation.
    The third part concerns experimental results of one-photon excitation of another related nitrogen vacancy centers, the H3 (NVN) centers, usually can be found in type Ia diamond. This work demonstrate the one-photon (473nm) excited fluorescence spectrum, the estimated corresponding absorption cross sections, and also the alternative use of type Ia diamond nanoparticles in biological applications.
    The fourth part is focusing on more detail characterization understanding of H3 centers in type Ia diamond. We chose 405nm as an excitation wavelength to avoid fluorescence sideband contributed from (N-V)-□□ centers. Through stretched-exponential fitting of luminescence lifetime, help us to understand the complex property of type Ia diamond, and also through lifetime measurement correlated with color and polarization dichroism, we found that there is not much correlation between lifetime and the internal polarization property of type Ia diamond. This might because the high concentration of defect centers which produced by the helium beam irradiation and annealing treatment, some distinguishable internal properties of color centers will be washed off, reveals homogeneous optical properties. And the color dichroism result tells us that the major color center properties of type Ia nanodiamond are H3 centers.

    Contents: 1.Introduction 2.One-photon and Two-photon fluorescence microscopy using nanosecond lasers 2.1Introduction 2.2 Experimental Methods 2.3 Result and Discussion 2.4 Summary 3.Two-photon excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type Ib Diamond 3.1 Introduction 3.2 Experimental Methods 3.3 Result and Discussions 3.3.1 Proton Beam Irradiation and Penetration Depth 3.3.2 N-V Concentration and OPA Cross Section 3.3.3 Two-Photon Fluorescence Spectra and Decay Lifetimes 3.4 Summary 4.Preparation and characterization of green fluorescent nanodiamonds for biological applications 4.1 Introduction 4.2 Experimental Methods 4.3 Result and Discussions 4.3.1 Type Ia natural diamond bulk crystalline 4.3.2 Type Ia natural diamond nanocrystallites 4.3.3 Biological applications 4.4Summary 5.Luminescence lifetime study of type Ia fluorescent nanodiamond 5.1 Introduction 5.2 Experimental method 5.3 Results and discussion 5.4 Summary 6.Conclusions References Publication list

    1. Denk, W., J.H. Strickler, and W.W. Webb, 2-Photon Laser Scanning Fluorescence Microscopy. Science, 1990. 248(4951): p. 73-76.
    2. Wang, H.F., et al., In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(44): p. 15752-15756.
    3. Walker, J., Optical-Absorption and Luminescence in Diamond. Reports on Progress in Physics, 1979. 42(10): p. 1605.
    4. Kaiser, W. and W.L. Bond, Nitrogen, a Major Impurity in Common Type-I Diamond. Physical Review, 1959. 1(4): p. 857-863.
    5. Chang, H.C., K.W. Chen, and S. Kwok, Nanodiamond as a possible carrier of extended red emission. Astrophysical Journal, 2006. 639(2): p. L63-L66.
    6. Yu, S.J., Kang, M.W., Cheng, H. C., Chen, K. M., Yu, Y. C., Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity. J. Am. Chem. Soc., 2005. 127: p. 17604-17605.
    7. Yang, W.S., et al., DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature Materials, 2002. 1(4): p. 253-257.
    8. Davies, G., et al., Vacancy-Related Centers in Diamond. Physical Review B, 1992. 46(20): p. 13157-13170.
    9. Clark, C.D. and C.A. Norris, Polarization of Luminescence Associated with 4150a and 5032a Centres in Diamond. Journal of Physics Part C Solid State Physics, 1970. 3(3): p. 651-&.
    10. Clark, C.D. and C.A. Norris, Photoluminescence Associated with 1.673, 1.944 and 2.498 Ev Centres in Diamond. Journal of Physics Part C Solid State Physics, 1971. 4(14): p. 2223-&.
    11. Davies, G., Effect of Nitrogen Impurity on Annealing of Radiation-Damage in Diamond. Journal of Physics Part C Solid State Physics, 1972. 5(17): p. 2534-&.
    12. Crossfie.Md, et al., Role of Defect Interactions in Reducing Decay Time of H-3 Luminescence in Diamond. Journal of Physics C-Solid State Physics, 1974. 7(10): p. 1909-1917.
    13. Kruger, A., et al., Surface functionalisation of detonation diamond suitable for biological applications. Journal of Materials Chemistry, 2006. 16(24): p. 2322-2328.
    14. F. Neugart, A.Z., F. Jelezko, C. Tietz, J. P. Boudou, A. Krueger, J. Wrachtrup, Dynamics of Diamond Nanoparticles in Solution and Cells. Nano Letters, 2007. 7(12): p. 3588-3591.
    15. Kruger, A., Hard and soft: Biofunctionalized diamond. Angewandte Chemie-International Edition, 2006. 45(39): p. 6426-6427.
    16. Potter, S.M., Vital imaging: Two photons are better than one. Current Biology, 1996. 6(12): p. 1595-1598.
    17. So, P.T.C., et al., Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering, 2000. 2: p. 399-429.
    18. Konig, K., et al., Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Optics Letters, 1997. 22(2): p. 135-136.
    19. Sun, C.K., et al., Higher harmonic generation microscopy for developmental biology. Journal of Structural Biology, 2004. 147(1): p. 19-30.
    20. Gannaway, J.N. and C.J.R. Sheppard, 2nd-Harmonic Imaging in Scanning Optical Microscope. Optical and Quantum Electronics, 1978. 10(5): p. 435-439.
    21. Tu, S.Y., et al., Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region. Optics Letters, 2005. 30(18): p. 2451-2453.
    22. Zumbusch, A., G.R. Holtom, and X.S. Xie, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Physical Review Letters, 1999. 82(20): p. 4142-4145.
    23. Hartl, A., et al., Protein-modified nanocrystalline diamond thin films for biosensor applications. Nature Materials, 2004. 3(10): p. 736-742.
    24. Schrand, A.M., et al., Are diamond nanoparticles cytotoxic? Journal of Physical Chemistry B, 2007. 111(1): p. 2-7.
    25. Huang, L.C.L. and H.C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir, 2004. 20(14): p. 5879-5884.
    26. Kong, X.L., et al., High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Analytical Chemistry, 2005. 77(1): p. 259-265.
    27. Chen, W.H., et al., Solid-phase extraction and elution on diamond (SPEED): A fast and general platform for proteome analysis with mass spectrometry. Analytical Chemistry, 2006. 78(12): p. 4228-4234.
    28. Nguyen, T.T.B., H.C. Chang, and V.W.K. Wu, Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diamond and Related Materials, 2007. 16(4-7): p. 872-876.
    29. Fu, C.C., et al., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(3): p. 727-732.
    30. Davies, G. and M.F. Hamer, Optical Studies of 1.945 Ev Vibronic Band in Diamond. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1976. 348(1653): p. 285-298.
    31. Jelezko, F., et al., Spectroscopy of single N-V centers in diamond. Single Molecules, 2001. 2(4): p. 255-260.
    32. Jelezko, F. and J. Wrachtrup, Single defect centres in diamond: A review. Physica Status Solidi a-Applications and Materials Science, 2006. 203(13): p. 3207-3225.
    33. Lim, Y.T.K., S.; Nakayama, A.; Stott, N.E.; Bawendi, M.G.; Frangioni, J.V., Selection of quantum dot wavelengths for biomedical assays and imaging. Molecular Imaging, 2003. 2: p. 50-64.
    34. Xu, C., et al., Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(20): p. 10763-10768.
    35. Helmchen, F. and W. Denk, Deep tissue two-photon microscopy. Nature Methods, 2005. 2(12): p. 932-940.
    36. Göppert-Mayer, Ann. Phys. , 1931. 9: p. 273.
    37. Shen, Y.R., The priciples of Nonlinear Optics. New York: Wiley, 1984: p. 202.
    38. Xu, C. and W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. Journal of the Optical Society of America B-Optical Physics, 1996. 13(3): p. 481-491.
    39. Hermann, J.P. and J. Ducuing, Absolute Measurement of 2-Photon Cross-Sections. Physical Review A, 1972. 5(6): p. 2557-&.
    40. Edwards, D.F.P., H.R., In the handbook of Optical Constants of Solids. Palik, E.D. ed., Academic:Orlando, 1985: p. 665.
    41. Bourgoin, J.C. and B. Massarani, Threshold Energy for Atomic Displacement in Diamond. Physical Review B, 1976. 14(8): p. 3690-3694.
    42. Koike, J., D.M. Parkin, and T.E. Mitchell, Displacement Threshold Energy for Type-Iia Diamond. Applied Physics Letters, 1992. 60(12): p. 1450-1452.
    43. Ziegler, J.F.B., J.P.; Littmark, U., The Stopping and Range of Ions in Solids. Pergamon:New York 1985.
    44. Prins, J.F., The diamond-vacuum interface: II. Electron extraction from n-type diamond: evidence for superconduction at room temperature. Semiconductor Science and Technology, 2003. 18(3): p. S131-S140.
    45. Kalish, R.D., G. ed.,, In Properties and Growth of Diamond. EMIS Datareviews Series No. 9, INSPECT, The Institute of Electrical Engineers: London, 1994. CH.6.4: p. 196.
    46. Brunetto, R., G.A. Baratta, and G. Strazzulla, Raman spectroscopy of ion irradiated diamond. Journal of Applied Physics, 2004. 96(1): p. 380-386.
    47. Newton, R.L., J.L. Davidson, and M.J. Lance, Raman microscopic characterization of proton-irradiated polycrystalline diamond films. Diamond and Related Materials, 2005. 14(2): p. 173-178.
    48. Gruber, A.D., C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science, 1997. 276: p. 2012.
    49. Davies, G., Current problems in diamond: towards a quantitative understanding. Physica B-Condensed Matter, 1999. 274: p. 15-23.
    50. Woods, G.S., J.A. Vanwyk, and A.T. Collins, The Nitrogen-Content of Type-Ib Synthetic Diamond. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 1990. 62(6): p. 589-595.
    51. Kiflawi, I., et al., Infrared-Absorption by the Single Nitrogen and a Defect Centers in Diamond. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 1994. 69(6): p. 1141-1147.
    52. Lawson, S.C., et al., On the existence of positively charged single-substitutional nitrogen in diamond. Journal of Physics-Condensed Matter, 1998. 10(27): p. 6171-6180.
    53. Birge, R.R.K.L.D., Kodak Laser Dyes. Eastman Kodak Company: Rochester, 1987.
    54. Collins, A.T., M.F. Thomaz, and M.I.B. Jorge, Luminescence Decay Time of the 1.945 Ev Center in Type Ib Diamond. Journal of Physics C-Solid State Physics, 1983. 16(11): p. 2177-2181.
    55. Hanzawa, H., Y. Nisida, and T. Kato, Measurement of decay time for the NV centre in Ib diamond with a picosecond laser pulse. Diamond and Related Materials, 1997. 6(11): p. 1595-1598.
    56. Davies, G., Properties and Growth of Diamond. EMIS Datareviews Series No. 9, INSPEC; The Institute of Electrical Engineers, London, Chap. 3., 1994.
    57. Kiflawi, I. and J. Bruley, The nitrogen aggregation sequence and the formation of voidites in diamond. Diamond and Related Materials, 2000. 9(1): p. 87-93.
    58. Rand, S.C. and L.G. Deshazer, Visible Color-Center Laser in Diamond. Optics Letters, 1985. 10(10): p. 481-483.
    59. W.T. Roberts, S.C.R., S. Redmond, NASA Tech Briefs NPO-30796.
    60. Wee, T.L., et al., Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type ib diamond. Journal of Physical Chemistry A, 2007. 111(38): p. 9379-9386.
    61. Chang, Y.R., et al., Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotechnology, 2008. 3(5): p. 284-288.
    62. Mita, Y., Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. Physical Review B, 1996. 53(17): p. 11360-11364.
    63. Sjoback, R., J. Nygren, and M. Kubista, Absorption and Fluorescence Properties of Fluorescein. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 1995. 51(6): p. L7-L21.
    64. J.F. Ziegler, J.P.B., U. Littmark, The Stopping and Range of Ions in Solids. Pergamon: New York, SRIM software (version 2003) 1985.
    65. Osswald, S., et al., Control of sp(2)/sp(3) carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. Journal of the American Chemical Society, 2006. 128(35): p. 11635-11642.
    66. Boyd, S.R., I. Kiflawi, and G.S. Woods, The Relationship between Infrared-Absorption and the a Defect Concentration in Diamond. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 1994. 69(6): p. 1149-1153.
    67. Boyd, S.R., I. Kiflawi, and G.S. Woods, Infrared-Absorption by the B-Nitrogen Aggregate in Diamond. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 1995. 72(3): p. 351-361.
    68. Davis, G., Physica B 1999. 15: p. 273-274.
    69. F. De Weerdt, J.V.R., Diamond Relat. Mater., 2001. 10: p. 474.
    70. C.-Y. Cheng, E.P., J.-S. Tu, P.-H. Chung, C.-L. Cheng, K.-K. Liu, J.-I. Chao, P.-H. Chen, C.-C. Chang, , Appl. Phys. Lett. , 2007. 90: p. 163903.
    71. K, -.K.L., C.-L. Cheng, C.-C. Chang, J.-I. Chao, Nanotech. 18 2007: p. 325102.
    72. J.-I. Chao, E.P., P.-H. Chung, K.-K. Liu, C.-Y. Cheng, C.-C. Chang, C.-L. Cheng,, Biophys. J. , 2007. 93: p. 2199.
    73. B.D. Chithrani, A.G., W.C.W. Chan, , Nano Lett. , 2006. 6: p. 662.
    74. I. Slowing, B.G.T., V.S.-Y. Lin, , J. Am. Chem. Soc. , 2006. 128: p. 14792.
    75. K.A. Muirhead, P.K.H., G. Poste, , Nature Biotech. , 1985. 3: p. 337.
    76. Wrachtrup, F.J.a.J., Single defect centres in diamond: A review. phys. stat. sol. (a), 2006. 203(13): p. 3207-3225.
    77. Davies, G., Aggregation of Nitrogen in Diamond. Nature, 1970. 228(5273): p. 758-&.
    78. De Weerdt, F. and A.T. Collins, Broad-band luminescence in natural brown type Ia diamonds. Diamond and Related Materials, 2007. 16(3): p. 512-516.
    79. Rand, S.C.a.D., L.G., Visible color-center laser in diamond. Optics Letters, 1985. 10(10): p. 481-483.
    80. Davies, G., M.H. Nazare, and M.F. Hamer, H-3 (2.463 Ev) Vibronic Band in Diamond - Uniaxial Stress Effects and Breakdown of Mirror Symmetry. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1976. 351(1665): p. 245-265.
    81. Davies, G. and Crossfie.M, Luminescence Quenching and Zero-Phonon Line Broadening Associated with Defect Interactions in Diamond. Journal of Physics C-Solid State Physics, 1973. 6(5): p. L104-L108.
    82. Wee, T.L., Mau, Y.W., Fang, Chia-Yi, Hsu, H.L., Han, C. C., Chang, H.C. , Preparation and characterization of green fluorescence nanodiamonds for biological applications. Diamond and Related Materials, 2008.
    83. Grichko, V., Tyler, T., Grishko, V. I., and Shenderova, O., Nanodiamond particles forming photonic structures. Nature Nanotechnology, 2008. 19: p. 225201-225205.
    84. Montiel, D. and H. Yang, Observation of correlated emission intensity and polarization fluctuations in single CdSe/ZnS quantum dots. Journal of Physical Chemistry A, 2008. 112(39): p. 9352-9355.
    85. Zhang, K., et al., Continuous distribution of emission states from single CdSe/ZnS quantum dots. Nano Letters, 2006. 6(4): p. 843-847.
    86. M. Boersch, R.R., G. Balasubramanian, R. Erdmann, F. Jelezko, J. Wrachtrup, Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase. Biomolecules, 2009.
    87. Phillips, J.C., Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 1996. 59(9): p. 1133-1207.
    88. Williams, G. and D.C. Watts, Non-Symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function. Transactions of the Faraday Society, 1970. 66(565P): p. 80-&.
    89. Vallee, R.A.L., et al., Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations. Macromolecules, 2003. 36(20): p. 7752-7758.
    90. Mauckner, G., et al., Temperature-Dependent Lifetime Distribution of the Photoluminescence S-Band in Porous Silicon. Journal of Applied Physics, 1994. 75(8): p. 4167-4170.
    91. Moerner, W.E. and M. Orrit, Illuminating single molecules in condensed matter. Science, 1999. 283(5408): p. 1670-+.
    92. Lee, K.C.B., et al., Application of the stretched exponential function to fluorescence lifetime imaging. Biophysical Journal, 2001. 81(3): p. 1265-1274.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE