簡易檢索 / 詳目顯示

研究生: 李怡萩
Li, Yi-Chiu
論文名稱: 建立半導體製造設備健康監控之動態缺陷抽樣決策架構
Constructing a Dynamic Defect Sampling Decision Framework for Equipment Health Monitoring in Semiconductor Manufacturing
指導教授: 簡禎富
Chien, Chen-Fu
口試委員: 許嘉裕
Chia-Yu Hsu
李家岩
Chia-Yen Lee
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 抽樣策略檢驗資訊價值線上缺陷掃描貝式決策分析半導體製造設備健康監控
外文關鍵詞: sampling strategy, sample information value, in-line inspection, Bayesian decision analysis, semiconductor manufacturing
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓廠為維護產品品質與掌握機台健康程度,在線上生產階段會利用缺陷掃描的檢測設備對線上生產的貨批進行抽樣檢測,以及早發現不良品,並作及時的處理,並透過缺陷分析監控機台狀況。缺陷檢測雖然能夠用以及早發現機台的異常情況並減少發生錯誤所造成的品質損失,但檢測需要耗費成本、過多的檢測量也會提高晶圓生產週期時間,抽樣策略的制定將影響整座晶圓廠的生產力。本研究目的為建立半導體製造設備健康監控之動態抽樣決策架構,包含透過貝氏決策分析與數學規劃模式以決定最佳機台抽樣週期時間之配置,並發展線上檢驗貨批資訊價值層級架構以評選貨批檢測資訊價值,提昇貨批掃描之成本效益。為檢驗提出方法的效度,本研究以台灣新竹科學園區的某半導體製造廠商作為實證對象,討論在不同水準檢測貨批數限制之下,最小化成本損失的變化趨勢,供個案公司在動態調整檢測量水準時參考,同時在選取模式中,利用個案公司歷史資料進行離線實驗以評估效益,並實際導入線上使用。實證結果已降低個案公司每日檢測貨批數、減輕檢測站負荷,達到減少檢測站作業人員數之效益。


    To avoid potential quality loss, inline defect inspection is used to monitor equipment health via sampling a processing lot every fixed period in semiconductor manufacturing. However, inspection needs cost and prolongs cycle time. Optimizing inspection sampling strategy is critical to enhance fab productivity and maintain competitive advantage of semiconductor companies. This study aims to construct a dynamic defect sampling decision framework for equipment health monitoring in semiconductor manufacturing. In particular, we focus on two sub-problems to enhance the effectiveness and efficiency of defect sampling. First, this study optimizes the sampling period allocation for each equipment using Bayesian decision analysis and mathematical programming model. Second, this study develops a scan lot evaluation hierarchy from the information value perspective to enhance cost-effectiveness. The empirical study was conducted in a leading semiconductor company in Taiwan. This study discussed the total expected quality loss in different scenarios and provided risk evaluation of scan lot reduction. In addition, this study offline simulated the selection mechanism based on historical data to evaluate performance, and implemented inline process. The result showed that the practical value for scan lot reduction and thus reduced workforce loading.

    目錄 目錄 ………………………………………………………………………… i 表目錄 ………………………………………………………………………… iii 圖目錄 ………………………………………………………………………… iv 第一章 緒論 1 1.1 研究背景、動機與重要性 1 1.2 研究範圍與研究目的 3 1.3 論文結構 4 第二章 文獻回顧 6 2.1半導體製程偏離與監控 6 2.2半導體抽樣策略與線上檢測相關研究 7 2.3貝式決策分析與決策樹 9 第三章 半導體製造設備健康監控之動態缺陷抽樣決策架構 11 專業術語與符號定義 13 3.1 瞭解問題與界定利基 15 3.2 機台最佳抽樣週期時間配置決策模式 17 3.2.1 界定利基 17 3.2.2 機台健康監控之缺陷抽樣影響圖 17 3.2.3 機台健康監控之缺陷抽樣決策樹 20 3.2.4 最佳機台抽樣週期時間數學規劃模型 23 3.3 缺陷掃描貨批最大資訊價值選取決策模式 24 3.3.1 界定利基 24 3.3.2 最佳資訊價值貨批選取之目標層級架構 25 3.3.3 屬性定義與衡量方式 27 3.3.4 候選貨批價值衡量 30 3.4 半導體製造設備健康監控之動態缺陷抽樣策略 31 第四章 實證研究 33 4.1 案例公司背景與界定利基 33 4.2 機台抽樣週期時間配置實證研究 35 4.2.1 機台健康監控之缺陷抽樣影響圖 35 4.2.2 機台健康監控之缺陷抽樣決策樹 38 4.2.3 最佳機台抽樣週期時間配置 40 4.2.4 權衡與決策 41 4.2.5 結果與討論 43 4.3 貨批選取模式實證研究 44 4.3.1 最佳資訊價值貨批選取流程 44 4.3.2 屬性定義與衡量方式 46 4.3.3 候選貨批價值衡量 47 4.3.4 權衡與決策 47 4.3.5 結果與討論 49 4.4 綜合討論 49 第五章 結論與未來研究方向 51 參考文獻 53   表目錄 表2.1半導體抽樣策略考慮要素之整理 8 表3.1半導體製造設備監控機制檢驗策略決策元素檢核表 15 表3.2機台監控與缺陷檢驗機制相關決策 16 表3.3最佳抽樣週期時間配置決策定義域 17 表3.4 最佳檢測貨批選取決策定義域 24 表3.5 資訊價值之機台因子目標與屬性說明 29 表3.6 資訊價值之貨批因子目標與屬性說明 30 表4.1機台A基本資料 35 表4.2貝式元素定義與數值計算方式整理(以機台A為例) 37 表4.3範例假設之成本參數值 38 表4.4抽樣決策樹各情境成本損失(以機台A為例) 38 表4.5抽樣決策樹計算範例(以機台A為例) 39 表4.6 限制不同水準總檢測貨批數下總期望成本損失與現況比較 40 表4.7限制不同水準總檢測貨批數下需投入額外的資源量 41 表4.8資料採計時間 45 表4.9上月生產資料 45 表4.10本月第一週生產資料 45 表4.11各型號計算結果 45 表4.12機台因子數值計算範例 46 表4.13貨批因子屬性值範例 46 表4.14 T6候選貨批挑選 47 表4.15實驗結果 48 圖目錄 圖1.1論文結構圖 5 圖2.1貝式決策分析架構 10 圖3.1半導體製造設備健康監控之動態缺陷抽樣決策架構 11 圖3.2機台健康監控與缺陷檢測影響圖 18 圖3.3單一機台抽樣週期時間設定影響圖 19 圖3.4單一機台抽樣週期時間設定決策樹 21 圖3.5 涵蓋機台種類示意圖 25 圖3.6 缺陷掃描貨批評選層級架構 25 圖3.7掃描累積時間、貨批出機時間與貨批檢測時間示意圖 26 圖3.8掃描涵蓋時間與延遲時間示意圖 26 圖3.9動態線上機台監控檢測流程 32 圖4.1半導體線上檢測防衛機制 34 圖4.2在不同抽樣週期時間下總期望成本損失 39 圖4.3限制不同水準總檢測貨批數下總期望成本損失關係 41 圖4.4限制不同水準總檢測貨批數下總期望成本損失與需額外投入資源關係 42

    簡禎富(2005),決策分析與管理,雙葉書廊,台北。
    Chien, C.-F., Chang, K.-H., and Chen, C.-P. (2003), “Design of Sampling Strategy for Measuring and Compensating Overlay Errors in Semiconductor Manufacturing,” International Journal of Production Research, Vol. 41, No. 11, pp. 2547-2561.
    Chien, C.-F. and Hsu, C.-Y. (2011), “UNISON Analysis to Model and Reduce Step-and-Scan Overlay Errors for Semiconductor Manufacturing,” Journal of Intelligent Manufacturing, Vol. 22, No. 3, pp. 399-412.
    Chien, C.-F., Hsu, S.-C., Peng, S., and Wu, C.-H. (2000), “A Cost-Based Heuristic for Statistically Determining Sampling Frequency in A Wafer Fab” Proceedings of the 2000 Semiconductor Manufacturing Technology Workshop, June 14-15, Hsinchu, Taiwan, pp. 217–229.
    Chien, C.-F., Hu, C.-H., and Lin, C.-Y. (2008), “Analysing Inspection Frequency for Wafer Bumping Process and an Empirical Study of Unison Decision Framework,” International Journal of Manufacturing Technology and Management, Vol. 14, No. 1, pp. 130-144.
    Chien, C.-F., Wang, H.-J., and Wang, M. (2007), “A UNISON Framework for Analyzing Alternative Strategies of IC Final Testing for Enhancing Overall Operational Effectiveness,” International Journal of Production Economics, Vol. 107, No. 1, pp. 20-30.
    Chun, Y. H. and Rinks, D. B. (1998), ”Three types of producer's and consumer's risks in the single sampling plan", Journal of Quality Technology, Vol. 30, No. 3, pp. 254-268.
    Chung, K. and Sang, C.P. (2000), “A Machine Learning Approach to Yield Management in Semiconductor Manufacturing”. International Journal of Production Research., Vol. 38, No. 17, pp. 4261-4271.
    Dauz`ere-P´er`es, S., Rouveyrol, J., Yugma, C., and Vialletelle, P. (2010),“A Smart Sampling Algorithm to Minimize Risk Dynamically,” Proceedings of 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), July 11-13, San Francisco, CA, USA, pp. 307–310.
    Hsu, S. and Chien, Chen-Fu (2007), “Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing,” International Journal of Production Economics, Vol. 107, No. 1, pp. 88-103.
    Kumar, N., Kennedy, K., Gildersleeve, K., Abelson, R., Mastrangelo, C. M., and Montgomery, D. C. (2006),“A Review of Yield Modeling Techniques for Semiconductor Manufacturing,” International Journal of Production Research, Vol. 44, No.23, pp. 5019–5036.
    Lee, J. H., You, S. J., and Park, S. C. (2001), “A New Intelligent SOFM-Based Sampling Plan for Advanced Process Control,” Expert Systems with Applications, Vol. 20, No. 2, pp. 133–151.
    Liu, C.-W. and Chien, Chen-Fu (2013), “An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing,” Engineering Applications of Artificial Intelligence, Vol. 26, No. 5-6, pp. 1479-1486.
    McNecil, B. J., Varady, P. D., Burrows, B. A., and Adelstein, S. J. (1975), “Measures of Clinical Efficacy. Cost-Effectiveness Calculations in the Diagnosis and Treatment of Hypertensive Renovasular Disease,” The New Eleventh International Conference on Decision Support Systems, Vol. 293, No. 5, pp. 216-221.
    Mouli, C. and Scott, M. J. (2007), "Adaptive Metrology Sampling Techniques Enabling Higher Precision in Variability Detection and Control," Proceedings of 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), June 11-12, Stresa, Italy, pp. 12-17.
    Nduhura-Munga, J., Dauzere-Peres, S., Vialletelle, P., and Yugma, C. (2011), “Dynamic Management of Controls in Semiconductor Manufacturing,” Proceedings of 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), May 16-18, Saratoga Springs, NY, USA, pp.1-6.
    Nduhura-Munga, J., Rodriguez-Verjan, G., Dauzere-Peres, S., Yugma, C., Vialletelle, P., and Pinaton, J. (2013), “A Literature Review on Sampling Techniques in Semiconductor Manufacturing,” IEEE Transactions on Semiconductor Manufacturing, Vol. 26, No. 2 , pp. 188–195.
    Niaki, S. T. A. and Nezhad, M. S. F. (2009) “Designing an Optimum Acceptance Plan Using Bayesian Inference and Stochastic Dynamic Programming,” Scientia Iranica, Transaction E: Industrial Engineering, Vol. 16, No. 1, pp. 19-25.
    Nurani, R. K., Akella, R., and Strojwas, A. J. (1996), “In-line Defect Sampling Methodology in Yield Management: An Integrated Framework,” IEEE Transactions on Semiconductor Manufacturing, Vol. 9, No. 4, pp. 506-515.
    Papazoglou, I. A. (1999), “Bayesian Decision Analysis and Reliability Certification,” Reliability Engineer and system safety, Vol. 66, No. 2, pp.177-198.
    Purdy M. (2003), “Dynamic metrology sampling methods, and system for performing same,” US patent, No. 6988045.
    Purdy, M. (2007) , “Dynamic, Weight-Based Sampling Algorithm,” Proceedings of 2007 International Symposium on Semiconductor Manufacturing (ISSM), October 15-17, Santa Clara, CA, USA, pp 1-4.
    Sainfort, F. (1991), “Evaluation of Medical Technologies: A Generalized ROC Analysis,” Medical Decision Making, Vol. 11, No. 3, pp. 208-220.
    Wan, J., Honari, B., and McLoone, S. (2013), “A Dynamic Sampling Methodology for Plasma Etch Processes Using Gaussian Process Regression,” Proceedings of 24th International Conference on Information, Communication and Automation Technologies (ICAT), October 30- November 01, Sarajevo, Bosnia & Herceg, pp. 1-6.
    Wang, Z., Gielen, G., and Sansen, W. (1998), “Probabilistic Fault Detection and the Selection of Measurements for Analog Integrated Circuits,” IEEE Transactions On Computer-Aided Design of Integtated Circuit and System, Vol. 17, No. 9, pp. 862-872.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE