簡易檢索 / 詳目顯示

研究生: 蔡福源
Tsai, Fu-Yuan
論文名稱: 一、甘菊藍醌分子在光引導DNA切割反應之探討 二、發展硝酸銨鈰作為去保護反應試劑之研究
I. Study of Photo-induced DNA Cleavages by an Azulenequinone II. Development of Ceric Ammoninum Nitrate as a Selective Deprotecting Reagent
指導教授: 胡紀如
Hwu, Jih Ru
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 120
中文關鍵詞: 光引導DNA切割甘菊藍醌硝酸銨鈰去保護反應試劑
外文關鍵詞: Photo-induced, DNA, Cleavages, Ceric Ammoninum Nitrate, Deprotecting Reagent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一、甘菊藍醌分子在光引導DNA切割反應之探討
    二、發展硝酸銨鈰作為去保護反應試劑之研究

    中文摘要

    在本論文中,3-(p-tolylamino)-1,5-azulenequinone 分子在有氧情況下,作為新型可受控制之光導引寡去氧核醣核苷酸 (oligodeoxyribonucleotide)切割試劑。同時亦記載此分子在照光環境下對寡去氧核醣核苷酸切割的模式。此外,我們亦發現含矽膠(silica gel)之硝酸銨鈰(ceric ammonium nitrate)能有效且迅速的選擇性移除含 tert-butyldimethylsilyl,triisopropylsilyl及 tert-butoxycarbonyl 等保護基之化合物的保護基。

    在第一部份中,數個單股及雙股寡去氧核醣核苷酸被合成出來,並在 350-nm 波長之紫外線照射下和化合物 3-(p-tolylamino)-1,5-azulenequinone 分子進行切割反應,發現分子對單股的切割效率要比雙股高;對於含去氧鳥糞核醣苷在寡去氧核醣核苷酸中的 bulge,hairpin loop 或末端,分子的切割效率也會增加。

    在第二部份中,我們發展出四個以硝酸銨鈰來選擇性移除在雙或三矽醚基(silyl ether)保護之核醣核苷中一級的tert-butyldimethylsilyl,triisopropylsilyl 保護基的方法以及選擇性移除在氨基、醇基及硫基上的 tert-butoxycarbonyl保護基的方法,比較這些去保護反應發現,其中以含矽膠之硝酸銨鈰要較單獨使用硝酸銨鈰的方法反應較快。此有機分子的去保護反應可能是經由電子轉移過程來完成。


    I. Study of Photo-induced DNA Cleavages by an Azulenequinone
    II. Development of Ceric Ammoninum Nitrate as a Selective Deprotecting Reagent

    Abstract

    In this dissertation, I report new and controllable photo-induced DNA cleaving processes by use of an azulenequinone under aerobic conditions. I also report the DNA cleavage pattern resulting from this compound under photolytical conditions. Furthermore, silica gel–supported ceric ammonium nitrate was found effective for rapid and selective cleavage of tert-butyldimethylsilyl, triisopropylsilyl, and tert-butoxycarbonyl group from protected compounds.

    In the first part, a series of single- and double-stranded oligodeoxyribonucleotides were synthesized. These oligodeoxyribonucleotides were cleaved by 3-(p-tolylamino)-1,5-azulenequinone upon irradiation with 350-nm UV light. The single strands were cleaved more efficiently than the double-helices. For the helices containing a deoxyguanosine residue at a bulge, at a hairpin loop, or towards the end, the cleaving efficiency was increased. Based on the DNA substrates studied, the results indicate that 3-(p-tolylamino)-1,5-azulenequinone can detect the abnormal DNA base pairing arrangements and conformations.

    In the second part, four new methods involving the use of ceric ammonium nitrate (i.e., (Ce(NH4)2(NO3)6) were developed for selective removal of the tert-butyldimethylsilyl or the triisopropylsilyl group from a primary hydroxyl functionality in di- or trisilyl ethers of ribonucleosides and selective removal of the tert-butoxycarbonyl group from an amino, hydroxy, or mercapto functionality in organic compounds. A comparative study of deprotection reactions by utilization of CAN alone or CAN impregnated on silica gel indicates a remarkable increase in the rate of the reaction involving a solid support. The mechanism of electron-transfer processes is proposed for the use of CAN–SiO2 in the removal of these protective groups from organic molecules.

    Contents English Abstract i Chinese Abstract iii Acknowledgement v Contents vi Introduction 1 Part 1: Interaction Between 3-(p-Tolylamino)-1,5-azulene- quinone and the Deoxyguanosine Residue in Various Oligonucleotide Upon Photolysis 3 Introduction 4 Results 9 Discussion 20 Conclusions 27 Experimental Section 28 Part 2: Ceric Ammonium Nitrate in the Selective Deprotection of tert-Butyldimethylsilyl, Triisopropylsilyl, and tert-Butoxycarbonyl Groups 35 Introduction 36 Results and Discussion 41 Conclusions 64 Experimental Section 65 Conclusion 81 References 83 Spectra 88

    References
    1. Tullius, T. D. In Bioorganic Chemistry: Nucleic Acids; Hecht, S. M., Ed.; Oxford University Press: New York, 1996; pp 144–162.
    2. Belmont, P.; Constant, J.-F.; Demeunynck M. Chem. Soc. Rev. 2001, 30, 70.
    3. Kawanishi, S.; Hiraku, Y.; Oikawa, S. Mutat. Res. 2001, 488, 65.
    4. Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. Rev. 1999, 99, 2777.
    5. Armitage, B. Chem. Rev. 1998, 98, 1171.
    6. Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109.
    7. Scott, T. L. In The Chemistry of Quinonoid Compounds; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1988; Vol. 2, pp 1385–1417.
    8. Nozoe, T.; Lin, C. C.; Tsay, S.-C.; Yu, S.-F.; Lin, L. C.; Yang, P. W.; Hwu, J. R. Bioorg. Med. Chem. Lett. 1997, 7, 975.
    9. Maxam, A. M.; Gilbert, W. Methods Enzymol. 1980, 65, 499.
    10. Chen, X.; Burrows, C. J.; Rokita, S. E. J. Am. Chem. Soc. 1992, 114, 322.
    11. Burrows, C. J.; Rokita, S. E. Acc. Chem. Res. 1994, 27, 295.
    12. Wurdeman, R. L.; Douskey, M. C.; Gold, B. Nucleic Acids Res. 1993, 21, 4975.
    13. Cheng, C.-C.; Kuo, Y.-N.; Chuang, K.-S.; Luo, C.-F.; Wang, W. J. Angew. Chem. Int. Ed. Engl. 1999, 38, 1255.
    14. Nakatani, K.; Sando, S.; Saito, I. J. Am. Chem. Soc. 2000, 122, 2172.
    15. Jackson, B. A.; Barton, J. K. J. Am. Chem. Soc. 1997, 119, 12986.
    16. Jackson, B. A.; Barton, J. K. Biochemistry 2000, 39, 6176.
    17. Saleeba, J. A.; Cotton, R. G. H. Methods Enzymol. 1993, 217, 286.
    18. Kelley, S. O.; Boon, E. M.; Barton, J. K.; Jackson, N. M.; Hill, M. G. Nucleic Acids Res. 1999, 27, 4830.
    19. Henderson, P. T.; Armitage, B.; Schuster, G. B. Biochemistry 1998, 37, 2991.
    20. Ciftan, S. A.; Thorp, H. H. J. Am. Chem. Soc. 1998, 120, 9995.
    21. Carter, P. J.; Breiner, K. M.; Thorp, H. H. Biochemistry 1998, 37, 13736.
    22. Fernandez–Saiz, M.; Henderson, P. T.; Wilson, W. D.; Schuster, G. B. Photochem. Photobiol. 1999, 70, 847.
    23. Saenger, W. In Principles of Nucleic Acid Structure; Cantor, C. R., Ed.; Springer-Verlag: New York, 1984; pp 117–158.
    24. Dauber–Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. Proteins: Struct. Funct. Genet. 1988, 4, 31.
    25. Atkinson, T.; Smith, M. In Oligonucleotide Synthesis: A Practical Approach, Gait, M. J., Ed.; IRL Press: Oxford, England, 1984; pp 35–81.
    26. Callahan, D. E.; Trapane, T. L.; Miller, P. S.; Ts'o, P. O. P.; Kan, L.-S. Biochemistry 1991, 30, 1650.
    27. Kan, L.-S.; Callahan, D. E.; Trapane, T. L.; Miller, P. S.; Ts'o, P. O. P.; Huang, D. H. J. Biomol. Struct. Dyn. 1991, 8, 911.
    28. Borer, P. N. In CRC Handbook of Biochemistry and Molecular Biology, 3rd ed.; Fasman, G. D., Ed.; CRC Press: Cleveland, OH, 1975; Vol. I, p 589.
    29. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Press: Cold Spring Harbor, NY, 1989.
    30. Butters, M. In Solid Supports and Catalysts in Organic Synthesis; Smith, K., Ed.; Ellis Horwood: New York, 1992; pp 65-□□□.
    31. Santaniello, E.; Ponti, F.; Manzocchi, A. Synthesis 1978, 534.
    32. Santaniello, E.; Ponti, F.; Manzocchi, A. Synthesis 1978, 891.
    33. McKillop, A.; Young, D. W. Synthesis 1979, 401; ibid. 481.
    34. Cornelis, A.; Laszlo, P. Synthesis 1985, 909.
    35. Laszlo, P. Acc. Chem. Res. 1986, 19, 121.
    36. Diddams, P. In Solid Supports and Catalysts in Organic Synthesis; Smith, K., Ed.; Ellis Horwood: New York, 1992; Chapter 1.
    37. Molander, G. A. Chem. Rev. 1992, 92, 29.
    38. (a) Hwu, J. R.; Jain, M. L.; Tsay, S.-C.; Hakimelahi, G. H. J. Chem. Soc., Chem. Commun. 1996, 545; (b) Hwu, J. R.; Jain, M. L.; Tsay, S.-C.; Hakimelahi, G. H. Tetrahedron Lett. 1996, 37, 2035; and (c) Hwu, J. R.; Jain, M. L.; Tsai, F.-Y.; Tsay, S.-C.; Balakumar, A.; Hakimelahi, G. H. J. Org. Chem. 2000, 65, 5077.
    40. Lalonde, M.; Chan, T. H. Synthesis 1985, 817.
    41. Rücker, C. Chem. Rev. 1995, 95, 1009, and references cited therein.
    42. Nelson, T. D.; Crouch, R. D. Synthesis 1996, 1031.
    43. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
    44. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; John Wiley: New York, 1991; pp 77-83.
    45. Newton, R. F.; Reynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberts, S. M. Tetrahedron Lett. 1979, 20, 3981.
    46. Kocie´nski, P. J. Protective Groups; Georg Thieme Verlag Stuttgart: New York, 1994; pp 33-37.
    47. Asakura, J.; Robins, M. J.; Asaka, Y.; Kim, T. H. J. Org. Chem. 1996, 61, 9026.
    48. Gupta, A. D.; Singh, R.; Singh, V. K. Synlett 1996, 69.
    49. Lee, A. S.-Y.; Yeh, H.-C.; Tsai, M.-H. Tetrahedron Lett. 1995, 36, 6891.
    50. Wünsch, E. In Methoden der Org Chem, Houben–Weil, Vol. 15/1; Wünsch, E., Ed.; Thieme: Stuttgart, 1974; pp 46–308.
    51. Schnabel, E.; Klostermeyer, H.; Berndt, H. Liebigs Ann. Chem. 1971, 749, 90.
    52. Stahl, G. L.; Walter, R.; Smith, C. W. J. Org. Chem. 1978, 43, 2285.
    53. Yamashiro, D.; Blake, J.; Li, C. H. J. Am. Chem. Soc. 1972, 94, 2855.
    54. Houghton, R. A.; Beckman, A.; Ostresh, J. M. Int. J. Pept. Protein Res. 1986, 27, 653.
    55. Kocienski, P. J. Protecting Groups; Georg Thieme Verlag Stuttgart: New York, 1994; pp 192–193 and references cited therein.
    56. Schmidt, U.; Utz, R.; Lieberknecht, A.; Griesser, H.; Potzolli, B.; Bahr, J.; Wagner, K.; Fischer, P. Synthesis 1987, 236.
    57. Vorbrüggen, H.; Krolikiewicz, K. Angew. Chem. 1975, 87, 877; Angew. Chem. Int. Ed. Engl. 1975, 14, 818.
    58. Hamada, Y.; Shioiri, T. J. Org. Chem. 1986, 51, 5489.
    59. Keinan, E.; Mazur, Y. J. Org. Chem. 1978, 43, 1020.
    60. Hudlicky, M. J. Org. Chem. 1974, 39, 3460.
    61. Taylor, E. C.; Chiang, C. S.; McKillop, A.; White, J. F. J. Am. Chem. Soc. 1976, 98, 6750.
    62. Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 2223.
    63. Cunico, R. F.; Bedell, L. J. Org. Chem. 1980, 45, 4797.
    64. Ho, T. L. In Organic Syntheses by Oxidation with Metal Compounds; Mijs, W. J.; de Jonge, C. R. H. I., Eds.; Plenum Press: New York, 1986; Chapter 11, pp 569-631.
    65. Janzen, E. G.; Wilcox, A. L.; Manoharan, V. J. Org. Chem. 1993, 58, 3597, and references cited therein.
    66. Ogilvie, K. K.; Beaucage, S. L.; Schifman, A. L.; Theriault, N. Y.; Sadana, K. L. Can. J. Chem. 1978, 56, 2768.
    67. Ogilvie, K. K.; Schifman, A. L.; Penney, C. L. Can. J. Chem. 1979, 57, 2230.
    68. Heslin, J. C.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1988, 1417.
    69. Its physical properties and spectroscopic characteristics in IR, 1H NMR, and 13C NMR are consistent with those of authentic samples available from Aldrich Chemical Co.
    70. Ogilvie, K. K.; Sadna, K. L.; Thompson, E. A.; Quilliam, M. A.; Westmore, J. B. Tetrahedron Lett. 1974, 33, 2861.
    71. Compounds are available from Aldrich or Sigma Chemical Co.
    72. Harder, U.; Pfeil, E.; Zenner, K.-F. Chem. Ber. 1964, 97, 510.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE