研究生: |
吳昆叡 Wu, Kun Rui |
---|---|
論文名稱: |
陽極氧化鋁用於背表面鈍化之太陽能電池研究 Study of Multicrystalline Silicon Solar Cells with Anodic Aluminum Oxide for Rear Surface Passivation |
指導教授: |
王立康
Wang,Li Karn |
口試委員: |
陳昇暉
張正陽 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 氧化鋁 、陽極氧化法 |
外文關鍵詞: | aluminum oxide, anodization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面鈍化用於增強太陽能電池的性能是必要的過程,在所有的鈍化材料中,氧化鋁(Al2O3)已證實為優質的鈍化層,基於其高密度的固定負電荷。本研究使用陽極氧化法所形成的氧化鋁,製備出局部背面接觸(PERC)的矽晶太陽能電池,並以鋁漿直接燒穿方式取代傳統的雷射開孔。
首先,藉由尋找最佳化的陽極氧化時間、熱退火溫度、熱退火時段等參數,使氧化鋁層在矽表面上表現完美的場效鈍化能力,為了探討氧化鋁退火前與退火後的材料特性,由C-V測量來分析其負電荷密度,利用XPS與TEM來量測其元素的組成與薄膜的型態。
最後,歸因於Al2O3鈍化太陽能電池背面的良好特性,與圖案的鋁漿背接觸做整合,此局部背面接觸的太陽能電池,其最佳的填充因子F.F.為73.1%、轉換效率為16.13%,與參考片電池相比其效率提升0.21%。
Surface passivation is the essential process for enhancing the performance of silicon solar cells. Among all the passivation materials, aluminum oxide (Al2O3) has proved to be a high quality passivationmaterial due to its high density of negative fixed charges. In this study, we form the Al2O3 film by anodization and apply this passivation layer onto the rear side of PERC solar cell. Moreover, the aluminum back contact are formed by making aluminum electrode penetrate the Al2O3 layer at high temperature instead of the conventional laser ablation process.
By finding the optimum anodization time period, thermal annealing temperature and annealing time, Al2O3 layer shows a perfect field-effect passivation on the silicon surface. In order to investigate the material characteristics of Al2O3 before and after annealing, the negative charge density is analyzed by C-V measurement. Then, the elemental composition and the film thickness are measured by XPS and TEM, respectively.
Finally, we integrate the Al2O3 rear passivation effect with a patterned aluminum paste back contact in fabricating a PERC multi-crystalline silicon solar cell. The PERC solar cell shows a fill facor of 73.1% and a conversion efficiency of 16.13%, which gives an efficiency improvement of 0.21% absolute in comparison with the reference cell.
[1] http://www.taipower.com.tw/content/new_info/new_info-b12.aspx?LinkID=6
[2] William Sockly, Hans J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J.Appl. Phys., vol.32, pp. 510-519, 1961.
[3] Christiana B. Honsberg, Member, IEEE, Jeffrey E. Cotter, Keith R. McIntosh, Stephen C. Pritchard,Bryce S. Richards, and Stuart R. Wenham, “Design strategies for commercial solar using the buried contact technology,” IEEE Transactons on Electron Devices, vol.46, 1999.
[4] Makoto Tanaka, Shingo Okamoto , Sadaji Tsuge, Seiichi Kiyama, “Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules,” 3rd World Conference on Photovoltaic Energy Conversion, 2003.
[5] Chun Gong, Sukhvinder Singh, Jo Robbelein, Niels Posthuma, Emmanuel Van Kerschaver, Jef Poortmans and Robert Mertens, “High efficient n-type back-junction back-contact silicon solar cells with screen-printed al-alloyed emitter and effective emitter passivation study,” Progress in Photovoltaics: Research and Applications, vol 19, pp. 781–786, 2011.
[6] Jianhua Zhao, Aihua Wang, and Martin A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar energy materials and solar cells, vol. 65, pp. 429-435, 2001.
[7] WP Mulligan, DH Rose and MJ Cudzinovic. "Manufacture of solar cells with 21% efficiency." Proc. vol.19 , 2004.
[8] 黃惠良,《太陽能電池》,五南圖書出版社,台北,2008 [9] 胡雁程,《矽晶太陽能電池鈍化技術之研究:硝酸浸泡方式處理及氫還原氣氛搭配氮化矽鈍化》,清華大學博士論文,2009
91
[10] 游政璋,《點接觸電極與背面鈍化層結構對異質接面太陽能電池效率之影響》,中央大學碩士論文,2012
[11] Jung M. Kim and Young K. Kim, “Saw-damage-induced structural defects on the surface of silicon crystals,” Journal of The Electrochemical Society, vol. 152, pp. 189-192, 2005.
[12] J.F. Lelie`vre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud and M. Lemiti, “Study of the composition of hydrogenated silicon nitride SiN xsurface and bulk passivation of silicon,” Solar Energy Materials & Solar Cells, vol. 93, pp. 1281-1289, 2009.
[13] TF Schulze, HN Beushausen and C Leendertz. "Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions."
Applied Physics Letters ,vol. 96, 2010.
[14] T Mueller, S Schwertheim, M Scherff and WR Fahrner. "High quality passivation for heterojunction solar cells by hydrogenated amorphous silicon suboxide films." Applied Physics Letters, vol. 92, 2008.
[15] I Martin, M Vetter, A Orpella and J Puigdollers "Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx: H films." Applied Physics Letters , pp. 2199-2201, 2001.
[16] Oliver Schultz, Ansgar Mette, Martin Hermle and Stefan W. Glunz, “Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology,” Progress in Photovoltaics: Research and Applications, vol. 16, pp. 317–324, 2008.
[17] SK Dhungel, J Yoo, K Kim and B Karunagaran. "Effect of pressure on surface passivation of silicon solar cell by forming gas annealing." Materials science in semiconductor processing , pp. 427-431, 2004.
[18] J. Schmidt1, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics: Research and Applications, vol 16, pp. 461–466, 2008.
[19] Bart Vermang, Hans Goverde, Loic Tous, Anne Lorenz, Patrick Choulat, Jorg Horzel, Joachim John, Jef Poortmans and Robert Mertens, “Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%,” Progress in Photovoltaics: Research and Applications, vol 20, pp. 269–273, 2012.
[20] Sheasby PG., Pinner R. “The surface treatment and finishing of aluminum and its alloys ,” Materials Park, Ohio & Stevenage, UK: ASM International & Finishing Publications , vol. 6, 2001.
[21] PH Lu, K Wang, Z Lu and AJ Lennon. "Anodic aluminum oxide passivation for silicon solar cells." Photovoltaics, pp. 143-151, 2013.
[22] Li, Feiyue, Lan Zhang, and Robert M. Metzger. "On the growth of highly ordered pores in anodized aluminum oxide." Chemistry of materials, pp. 2470-2480, 1998.
[23] Poinern, Gerrard Eddy Jai, Nurshahidah Ali, and Derek Fawcett. "Progress in nano-engineered anodic aluminum oxide membrane development." Materials, pp. 487-526, 2011.
[24] Parkhutik, V. P., and V. I. Shershulsky. "Theoretical modelling of porous oxide growth on aluminium." Applied Physics, 1992.
[25] Brown, F., and W. D. Mackintosh. "The Use of Rutherford Backscattering to Study the Behavior of Ion‐Implanted Atoms During Anodic Oxidation of Aluminum." The Electrochemical Society, pp. 1096-1102, 1973.
[26] O'sullivan, J. P., and G. C. Wood. "The morphology and mechanism of formation of porous anodic films on aluminium." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 317, pp. 1531, 1970.
[27] N Taşaltın, S Öztürk, N Kılınç, H Yüzer and ZZ Öztürk. "Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions." Applied Physics, pp. 781-787, 2009.
[28] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf and G. Beaucarne, "Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge," Solar Energy Materials and Solar Cells, vol. 90, pp. 3438-3443, 2006.
[29]http://www.cse.anl.gov/catalysis_energy_conversion/hetero_catalysis/synthesis _ atomic_layer_deposition.html
[30] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, "On the c -Si surface passivation mechanism by the negative-charge-dielectric Al2O3," Journal of Applied Physics, vol. 104, 2008.
[31] B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, "Silicon surface passivation by atomic layer deposited Al2O3," Journal of Applied Physics, vol. 104, 2008.
[32] 施敏、李明逵,《半導體元件物理與製作技術》,國立交通大學,新竹,2013 [33] http://forum.gamer.com.tw/Co.php?bsn=60433&sn=608485
[34] http://www.ccut.edu.tw/teachers/wentse/downloads/laser0-2.ppt
[35] I. Tiginyanu, S. Langa, H. Foell and V. Ursachi, "Pores in III–V semiconductors." Advanced Materials, pp. 183-198, 2003.
[36] Sah, Chih-Tang, Robert Noyce, and William Shockley. "Carrier generation and recombination in pn junctions and pn junction characteristics." Proceedings of the IRE, pp. 1228-1243, 1957.
[37] Kerr, Mark J., and Andres Cuevas. "General parameterization of Auger recombination in crystalline silicon." Journal of Applied Physics, pp. 2473-2480, 2002.
94
[38] R. Woehl, J. Krause, F. Granek and D. Biro, “19.7% efficient all-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter,” IEEE Electron Device Letters, pp. 345-347, 2011
[39] A. Kaminski, B. Vandella, A. Fave, J.P. Boyeaux, L. Q. Nam, R. Monna, D. Sarti and A. Laugier, "Aluminum BSF in silicon solar cells," Solar Energy Material & Solar Cells, pp. 373-379, 2002
[40] O.V. Roos, "A simple theory of back surface field (BSF) solar cells," J. Appl. Phys., pp. 3503-3511, 1978
[41] S. Gajendra, A.Verma, and R. Jeyakumar, "Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field," RSC, Adv. 4.9, pp. 4225-4229, 2013.
[42] http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
[43] http://forum.netcontrol.tw/viewtopic.php?f=92&t=10810
[44] http://cn.gamry.com/application-notes-3/dye-solar-cells-part-1/
[45] 吳坤憲,《簡介半導體材料與元件之電性量測》,線上,網址:
http://www.slidefinder.net/-/-----/2010_5_e811bdfe/19789682/p2.
[46] HC Casey Jr, GG Fountain and RG Alley. "Low interface trap density for remote plasma deposited SiO2 on n‐type GaN." Applied Physics Letters, pp. 1850-1852, 1996.
[47] Campbell, Patrick, and Martin A. Green. "Light trapping properties of pyramidally textured surfaces." Journal of Applied Physics, pp. 243-249, 1987.
[48] http://www.centrotherm.cn/fileadmin/Bilder/Produktbilder/PV/c.DIFF_LP_L
ow_Pressure_Diffusion.jpg
[49] M.A. Green 著,曹昭陽、狄大衛、李秀文譯,太陽電池工作原理,技術與系統應用,五南圖書出版公司,2009
[50] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert and R. Brendel, ”Contact formation and recombination at screen-printed local aluminum-alloy silicon solar cell base contacts,” IEEE Transactions on Electron Device, pp. 3239-3245, 2011.
[51] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert and Rolf Brendel,
”Recombination at local aluminum-alloy silicon solar cell base contacts by dynamic infrared lifetime mapping,” Energy Procedia, pp. 521-526, 2011.
[52] Jia Chen, Zhi Hao Joseph Tey, Zhe Ren Du, Fen Lin, Bram Hoex, and Armin G. Aberle, "Investigation of screen-printed rear contacts for aluminum local back surface field silicon wafer solar cells," IEEE Journal of Photovoltaics, vol. 3, pp. 690-696, 2013.
[53] 曹天相,《背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:初步研究》,清華大學碩士論文,2015
[54] E Urrejola, K Peter and H Plagwitz. "Al–Si alloy formation in narrow p-type Si contact areas for rear passivated solar cells." Journal of applied physics, 2010.