研究生: |
洪 展 Chan, Hung |
---|---|
論文名稱: |
利用塗層改善層狀結構鈉離子電池 P2- Na0.67Ni0.3Mn0.6Cu0.1O2電化學性質 Effect of Surface Coating on the electrochemical properties of SIB with layer typed P2-Na0.67Ni0.3Mn0.6Cu0.1O2 |
指導教授: |
蔡哲正
Tsai, Cho-Jen |
口試委員: |
林居南
Lin, Jiu-Nan 陳翰儀 Chen, Han-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 鈉離子電池 、摻雜 、包覆 |
外文關鍵詞: | Na-ion battery, doping, coating |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綜觀鋰離子電池趨於飽和的發展,科學家們開始著眼於鈉離子電池,而其中層狀結構鈉錳氧系統因具有較高的理論電容量240 mAh/g、成本、無毒等優勢,因此被譽為鈉離子電池裡最具商業化潛力的二次電池。然而也有許多導致電池電性不佳的問題需要改善,本實驗期望利用塗層改善層狀結構過度金屬鈉離子電池遇到的問題。
第一部分透過參照成熟發展的層狀結構的鋰離子電池塗層製文獻選定二氧化鋁、二氧化鋯塗層著手實驗並觀察結果,發現氧化鋁及二氧化鋯的塗層皆可以有效改善電池在長圈數以及變速率等等方面的電性,其中最佳比例大約為前驅物佔8 %塗層重量比。
第二部份透過延伸實驗分別確認塗層效應是對於哪方面問題的改善,得到結果為塗層能有效改善活物中錳於高伏會溶於電解液的問題,對於高伏相轉換問題的抑制則仍有待商榷
Layered transition metal oxide forms of sodium-ion batteries are popularly investigated in recent years due to several advantages, like non-toxic and better rate performances, etc. Although these kinds of batteries have lots of advantages, there are still some challenges need to be solved.
First part in this study, we selected ZrO2 and Al2O3 base on mature LIBs coating process and then observed the experiment results. The results indicated that ZrO2 and Al2O3 surface coating can obviously enhance the electrochemical properties, and the best coating ratio observed from experiments is 8 wt%.
Second, we design more experiments in order to figure out the effect by oxide coating. From the results we found out that oxide surface coating can effectively restrain the dissolution of manganese at high voltage, but the resistivity to the P2-O2 phase transition still need to be confirmed.
1. 2017, F.c.u.h.w.f.c.u.t.-b. https://www.faradion.co.uk/
2. https://zh.wikipedia.org/wiki/.
3. Xiang, X., K. Zhang, and J. Chen, Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries. Adv Mater, 2015. 27(36): p. 5343-64.
4. Slater, M.D., et al., Sodium‐ion batteries. Advanced Functional Materials, 2013. 23(8): p. 947-958.
5. Kim, S.-W., et al., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(7): p. 710-721.
6. Yabuuchi, N., et al., Research development on sodium-ion batteries. Chemical reviews, 2014. 114(23): p. 11636-11682.
7. Clément, R.J., P.G. Bruce, and C.P. Grey, manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. Journal of The Electrochemical Society, 2015. 162(14): p. A2589-A2604.
8. Manikandan, P., D. Ramasubramonian, and M.M. Shaijumon, Layered P2-type Na 0.5 Ni 0.25 Mn 0.75 O 2 as a high performance cathode material for sodium-ion batteries. Electrochimica Acta, 2016. 206: p. 199-206.
9. Zhang, X.H., et al., P2-Na2/3Ni1/3Mn5/9Al1/9O2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanisam via Graphene Connection. ACS Appl Mater Interfaces, 2016. 8(32): p. 20650-9.
10. Kang, W., et al., Copper substituted P2-type Na0.67CuxMn1−xO2: a stable high-power sodium-ion battery cathode. Journal of Materials Chemistry A, 2015. 3(45): p. 22846-22852.
11. Kang, W., et al., P2-Type NaxCu0.15Ni0.20Mn0.65O2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries. ACS Appl Mater Interfaces, 2016. 8(46): p. 31661-31668.
12. Chen, S., et al., P2-type Na0.67Ni0.33−x
Cu
x
Mn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Ionics, 2017. 23(11): p. 3057-3066.
13. Ponrouch, A., et al., In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science, 2012. 5(9): p. 8572.
14. Hwang, J.Y., S.T. Myung, and Y.K. Sun, Sodium-ion batteries: present and future. Chem Soc Rev, 2017. 46(12): p. 3529-3614.
15. Wang, L., et al., Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. Journal of Materials Chemistry A, 2017. 5(18): p. 8752-8761.
16. Singh, G., et al., High Voltage Mg-Doped Na0.67Ni0.3–xMgxMn0.7O2 (x = 0.05, 0.1) Na-Ion Cathodes with Enhanced Stability and Rate Capability. Chemistry of Materials, 2016. 28(14): p. 5087-5094.
17. Li, C., et al., Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006. 51(19): p. 3872-3883.
18. Ramasamy, H.V., et al., Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. Journal of Materials Chemistry A, 2017. 5(18): p. 8408-8415.
19. Liu, Y., et al., Layered P2-Na 2/3 [Ni 1/3 Mn 2/3 ]O 2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al 2 O 3 surface modification. Nano Energy, 2016. 27: p. 27-34.
20. Jung, S.C., et al., Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion. Nano Lett, 2014. 14(11): p. 6559-63.