研究生: |
鄭培仁 Jeng, Pei-Ren |
---|---|
論文名稱: |
以振動珠鏈的動力學模擬進行去氧核醣核酸之行為研究 Kinetic Simulations on DNA Molecules Using Vibrated Granular Chains for Future Biochips Development |
指導教授: |
連振炘
Lien, Chenshin 周亞謙 Chou, Ya-Chang |
口試委員: |
陳志強
杜其永 黃國貞 周亞謙 連振炘 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 197 |
中文關鍵詞: | 振動珠鏈 、動力學 、去氧核醣核酸 |
外文關鍵詞: | Granular Chian, Kinetics, DNA |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積體電路的迅速發展使得研究人員與業界開始投注其目光於應用半導體製程技術在生物晶片上的研究,其中目前最令科學界關心的項目有:關於去氧核醣核酸的定序以及病毒染色體在宿主細胞中的轉導過程等。以去氧核醣核酸定序為例,傳統研究者須以離心計等大型裝置耗費長時間比對才能在實驗室中獲得此一關於人類遺傳的重要資訊, 而半導體技術長於在奈米級的尺度下大量形成複製結構與可嵌入電子傳輸測量的特性使得欲普及此類生物晶片來進行遺傳醫學的願景似是指日可待。另外在病毒感染的過程中如何達成染色體傳播的課題目前在學術界亦未有確切共識,以致於在其感染防治上仍有新興方式的發展空間。利用數值模擬去氧核醣核酸長鏈分子的運動行為,或者使用光學鑷子探測染色體的力學特性為習見的研究方式。本論文使用的方法是以振動珠鏈在等比例設計的裝置中進行實驗,藉由高速擷取影像所得到的珠鍊位置速度等統計的結果並使用力學模型來解釋其行為模式。由於實體的珠鏈是由中空鐵珠及連接相鄰鐵珠的啞鈴形鐵線所組成,與一般常用的蒙地卡羅數值模型相當近似,且珠鏈中的鐵珠間互相影響運動的駐留長度特性也和一般研究長鏈分子的特徵相符,這讓我們在可直視的範圍下得以進行單一珠鏈的運動行為量測,並以熵力、摩擦力與衝量或外加施力等基礎物理量建立其力學模型,並據以對其展現的巨觀行為如脫逸時間與開口的幾何關係,或是迴旋半徑與時間的例比關係等進行探討。經由這些統計量與文獻上實際觀察結果的對照,我們可以推估實際去氧核醣核酸長鏈分子的運動模式,並進而提出影響這些遺傳現象的因素使得在探討如何控制這些遺傳現象時呈現清晰的圖像並藉此謀求新技術的可能性。
We use vibrated granular chain to simulate the long chain polymer, with the similarities in the monomer characteristics to the Monte Carlo methodology and in the statistical behaviors to the DNA molecules such as persistence length, radius of gyration, and so on. With the scaled apparatuses, we are able to investigate the kinetic mechanism the chain encountered by determining the statistical properties. The features of genome packaging and ejection during the transconduction, chromogenic electrophoresis through nano capillary, and coil-to-globule transitions are reproduced. Therefore the studies on the global manners of granular chains and their dependence on the experimental geometries contribute to the explanations on the biophysical phenomenon of DNA molecules. This visible simulation with single-chain experiment allows us to control the individual parameters precisely and determine the dominate factors that influence the dynamics. The mechanisms are beneficial to the fundamentals of future biochips applied for DNA computing with the sequencing in genetics, which could be the dominate contributions on disease prevention and medicine development.
Chapter 1
[1] L. Adleman, Molecular computation of solutions to combinatorial problems. Science 266, 1021-1024 (1994).
[2] Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and & L. M. Smith. DNA computing on surfaces. Nature 403(13), 175-179 (2000).
[3] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, An autonomous molecular computer for logical control of gene expression, Nature 429, 423-429 (2004).
[4] J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA 93, 13770-13773(1996).
[5] S. W. P. Turner, M. Cabodi, and H. G. Craighead, Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure, Phys. Rev. Lett. 88(12), 12803 (2002).
[6] Y. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson, Kinetic at the collapse transition of homopolymers and random copolymers, J. Chem. Phys. 103(11), 4807-4817 (1995).
[7] R. Jones, Nano Nature: Nature's Spectacular Hidden World, published by Collins (February 2009).
[8] J. D. Watson and F. H. C. Crick, Molecular structure of nucleic acid, Nature 171, 737-738 (1953).
[9] Z. A. Daya, E. Ben-Naim, and R. E. Ecke, Experimantal characterization of vibrated granular rings, Eur. Phys. J. E 21, 1-10(2006).
[10] P. G. de Gennes. Scaling concepts in polymer physics (Cornell University Press, Ithaca, NY, 1979).
[11] Y. C. Chou, E. Cho, T.-h. Chou, and T. M. Hong. Elasticity transition and loop formation in vibrated bead chains: A simulation of polymer chains. Eur. Phys. J. E 29, 157-161 (2009).
[12] Angelo Cacciuto and Erik Luijten, Confinement-driven translocation of a flexible polymer, Phys. Rev. Lett. 96, 238104 (2006).
[13] Z. A. Daya, E. Ben-Naim, P. Vorobieff, and R. E. Ecke, Knots and random walks in vibrated grainular chains, Phys. Rev. Lett. 86, 1414-1417 (2001).
Chapter 2
[1] Philip Serwer. The source of energy for bacteriophage DNA packaging: anosmotic pump explains the data. Biopolymers 1988, 27, 165-169.
[2] Philip Serwer. Models of bacteriophage DNA packaging motors. Journal of Structural Biology 2003, 141(3), 179-188.
[3] Derek N. Fuller, John Peter Rickgauer, Paul J. Jardine, Shelley Grimes, Dwight L. Anderson, and Douglas E. Smith. From the Cover: Ionic effects on viral DNA packaging and portal motor function in bacteriophage Φ29. Proc Natl Acad Sci USA 2007, 104 (27), 11245-11250.
[4] James Kindt, Shelly Tzlil, Avinoam Ben-Shaul, and William M. Gelbart. DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci USA 2001, 98 (24), 13671-13674.
[5] Douglas E. Smith, Sander J. Tans, Steven B. Smith, Shelley Grimes, Dwight L, Anderson Carlos Bustamante. The bacteriophage Φ29 portal motor can package DNA against a large internal force. Nature 413, 748-752 (2001).
[6] Yann R. Chemla, Jens Michaelis, Shelley Grimes, Paul J. Jardine, Dwight L. Anderson, and Carlos Bustamante. Mechanism of Force generation of a viral DNA packaging motor. Cell 122, 683-692 (2005).
[7] James M. Tsay, Jean Sippy, Michael Feiss, and Douglas E. Smith. The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction. Proc Natl Acad Sci USA 2009, 106 (34), 14355-14360.
[8] Derek N. Fuller, Dorian M. Raymer, Vishal I. Kottadiel, Venigalla B. Rao, and Douglas E. Smith. Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc Natl Acad Sci USA 2007, 104(43), 16868-16873.
[9] Mark C. Williams. Stuffing a virus with DNA: Dissecting viral genome packaging. Proc Natl Acad Sci USA 2007, 104(27), 11125-11126.
[10] Peng Jing, Farzin Haque, Dan Shu, Carlo Montemagno, and Peixuan Guo. One-Way Traffic of a Viral Motor Channel for Double-Stranded DNA Translocation. Nano Lett. 2010, 10(9), 3620-3627.
[11] Stijn van Drop, Ulrih F. Keyser, Nynke H. Dekker, Cees Dekker and Serge G. Lemay. Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Physics 2009, 5, 347-351
[12] Alan A. Simpson, Yizhi Tao, Petr G. Leiman, Mohammed O. Badasso, Younging He, Paua J. Jardine, Norman H. Olson, Marc C. Morals, Shelley Grimes, Dwight L, Anderson, Timonthy S. Baker and Michael G. Rossmann. Structure of the bacteriophage Φ29 DNA packaging motor. Nature 408, 745-750 (2000).
[13] U. F Keyser, J. van der Does, C, Dekker, and N. H. Dekker. Optical tweezers for force measurements on DNA in nanopores. Rev. of Sci. Inst. 77, 105015 (2006).
[14] Y. C. Chou, E. Cho, T.-h. Chou, and T. M. Hong. Elasticity transition and loop formation in vibrated bead chains: A simulation of polymer chains. Eur. Phys. J. E 29, 157-161 (2009).
[15] I. Ali, D. Marenduzzo, and J. M. Yeomans. Polymer packaging and ejection in viral capsids: Shape matters. Phys. Rev. Lett. 96, 208102 (2006).
[16] Neal B Groman and Grace Suzuki. Temperature and Lambda phage reproduction. J. Bacteriol. 84, 431-437 (1962).
[17] Sung Joon Moon, J. B. Swift, and Harry L. Swinney. Steady-state velocity distributions of an oscillated granular gas. Phys. Rev. E. 69, 011301 (2004).
[18] Carlos Bustamante, Zev Bryant and Steven B. Smith. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423-427 (2003).
[19] Andrey A Lebedev, Margret H Krause, Anabela L Isidro, Alexei A Vagin, Elena V Orlova, Joanne Turner, Eleanor J Dodson, Paulo Travares and Alfred A antson. Structural framework for DNA translocation via the viral portal protein. The EMBO Journal 26 (7), 1984-1994 (2007).
[20] Siyang Sun, Kiran Kondabagil, Bonnie Draper, Tanfis I. Alam, Valorie D. Bowman, Zhihong Zhang, Shylaja Hedge, Andrei Fokine, Michael G. Rossmann, and Venigalla B. Rao, The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 135, 1251-1262 (2008).
[21] Derek N Fuller, Dorian M. Raymer, John Peter Rickgauer, Rae M. Robertson, Carlos E. Catalano, Dwight L. Anderson, Shelley Grimes, and Douglas E. Smith. Measurements of single DNA molecule packaging dynamics in bacteriophage □ reveal high forces, high motor processivity, and capsid transformations. J. Mol. Biol. 373, 1113-1122 (2007).
[22] John Peter Rickgauer, Derek N Fuller, Shelley Grimes, Paul J. Jardine, Dwight L. Anderson, and Douglas E. Smith. Portal Motor Velocity and internal force resisting Viral DNA packaging in Bacteriophage Φ29. Biophysical Journal 94, 159-167 (2008).
[23] Anton S. Petrov, Mustafa Burak Boz, Stephen C. Harvey. The confirmation of double-stranded DNA inside bacteriophages depends on capsid size and shape. Journal of Structural Biology 160, 241-248 (2007).
[24] Xabier Agirrezabala, Jaime Martin-Benito, Mikel Valle, Jose M. Gonzalez, Alfonso Valencal, Jose Maria Valpuesta and Jose L. Carrascosa. Structure of the connector of bacteriophage T7 at 8Å resolution: structural homologies of a basic component of a DNA tanslocating machinery. J. Mol. Biol. 347, 895-902 (2005).
[25] Anton S. Petrov, Krista Lim-Hing, Stephen C. Harvey. Packaging of DNA by bacteriophage Epsilon 15: structure, forces, and thermodynamics. Cell 15, 807-812 (2007).
[26] I. Ali, D. MArenduzzo, and J. M. Yeomans. Dynamics of polymer packaging. Journal of Chemical Physics 121 (17), 8635-8641 (2004).
[27] Prashant K. Purohit, Mandar M. Inamdar, Paul D. Grayson, Tod M. Squires, Jane Kondev, and Rob Phillips. Forces during bacteriophage DNA packaging and ejection. Biophysical Journal 88, 851-866 (2005).
[28] Elena V. Orlova, Brent Growen, Anja Droge, Asita Stiege, Frank Weise, Rudi Lurz, Marin van Heel, and Paulo Tavares. Structure of a viral DNA gatekeeper at 10 Å resolution by cryo-electron microscopy. The EMBO Journal 22 (6), 1255-1262 (2003).
[29] Shelly Tzlil, James T. Kindt, William M. Gelbart, and Avinoam Ben-Shaul. Forces and pressures in DNA packaging and release from viral capsids. Biophysical Journal 84, 1616-1627 (2003).
[30] Andrew James Spakowitz and Zhen-Gang Wang. DNA packaging in bacteriophage: is twist important? Biophysical Journal 88, 3912-3923 (2005).
[31] Sean D. Moore and Peter E. Prevelige Jr.. DNA packaging: A new class of dispatch molecular motors. Current Biology 12, R96-R98 (2002).
[32] Ed. Stephen Mc Grath and Douwe van Sinderen. Bacteriophage: Genetics and Molecular Biology (Caister Academic Press, UK 2007) Chapter 9.
[33] Eric Raspaud, Thomas Forth, Carlos Sao-Jose, Paulo Tavars, and Marta de Frutos. A kinetic analysis of DNA ejection from tailed phages revealing the prerequisite activation energy. Biophysical Journal 93, 3999-4005 (2007).
Chapter 3
[1] S. Casjens, & R. Hendrix, in The Bacteriophages (ed. Clendar R., Plenum Press, NY 1988) Chapter 2.
[2] Ed. Stephen Mc Grath and Douwe van Sinderen. Bacteriophage: Genetics and Molecular Biology (Caister Academic Press, UK 2007) Chapter 9.
[3] M. L. Morse, Esther M. Lederberg, and Joshua Lederberg. Transduction in Escherichia Coli K-12. Genetics 41(1), 142–156 (1956).
[4] James Kindt, Shelly Tzlil, Avinoam Ben-Shaul, and William M. Gelbart. DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci USA 2001, 98 (24) 13671-13674.
[5] Shelly Tzlil, James T. Kindt, William M. Gelbart, and Avinoam Ben-Shaul. Forces and Pressures in DNA Packaging and Release from Viral Capsids. Biophysical Journal 84, 1616–1627 (2003).
[6] Prashant K. Purohit, Mandar M. Inamdar, Paul D. Grayson, Todd M. Squires, Jane´ Kondev, and Rob Phillips. Forces during Bacteriophage DNA Packaging and Ejection. Biophysical Journal 88, 851–866 (2005).
[7] Mandar M. Inamdar, William M. Gelbart,y and Rob Phillips. Dynamics of DNA Ejection from Bacteriophage. Biophysical Journal 91, 411–420 (2006).
[8] John Peter Rickgauer, Derek N. Fuller, Shelley Grimes, Paul J. Jardine, Dwight L. Anderson, and Douglas E. Smith. Portal Motor Velocity and Internal Force Resisting Viral DNA Packaging in Bacteriophage □29. Biophysical Journal 94, 159–167 (2008).
[9] Anton S. Petrov and Stephen C. Harvey. Packaging Double-Helical DNA into Viral Capsids: Structures, Forces, and Energetics. Biophysical Journal 95, 497–502 (2008).
[10] Stephanie Mangenot, Marion Hochrein, Joachim Radler, and Lucienne Letellier. Real-time imaging of DNA ejection from single phage particles. Current Biology 15, 430-435 (2005).
[11] Marta de Frutos, Lucienne Letellier, and Eric Raspaud. DNA ejection from bacteriophage T5: analysis of the kinetics and energetic. Biophysical Journal 88, 1364-1370 (2005).
[12] Paul Grayson, Lin Han, Tabita Winther, and Rob Phillips. Real-time observations of single bacteriophage λ DNA ejections in vitro. Proc Natl Acad Sci USA 2007, 104 (37) 14652-14657.
[13] Zuzanna Siwy and Andrzej Fuliński. A nanodevice for rectification and pumping ions. Am. J. Phys. 72, 567(2004).
[14] Yacov Kantor and Mehran Kardar. Anomalous dynamics of forced translocation. Phys.Rev. E 69, 021806 (2004).
[15] A. Yu. Grosberg, S. Nechaev, M. Tamm, and O. Vasilyev. How long does it take to pull an ideal polymer into a small hole? Phys. Rev. Lett. 96, 228105 (2006).
[16] A. Balducci, C.-C. Hsieh, and P. S. Doyle. Relaxation of stretched DNA in slitlike confinement. Phys. Rev. Lett. 99, 238102 (2007).
[17] Takahiro Sakaue and Natsuhiko Yoshinaga. Dynamics of polymer decompression: expansion, unfolding, and ejection. Phys.Rev. Lett. 102, 148302 (2009).
[18] S. W. P. Turner, M. Cabodi, and H. G. Craighead. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys.Rev. Lett. 88, 128103 (2002).
[19] Alex Evilevitch, Laurence Lavelle, Charles M. Knobler, Eric Raspaud, and William M. Gelbart. Osmotic pressure inhibition of DNA ejection from phage. Proc Natl Acad Sci USA 2003, 100 (16) 9292-9295.
[20] Zhidong Li, Jianzhong Wu, and Zhen-Gang Wang. Osmotic pressure and packaging structure of caged DNA. Biophysical Journal 94, 737-746 (2008).
[21] K. Hagita, S. Koseki, and K Takano. Relaxation of a Polymer Chain Confined in a Tube. J. Phys. Soc. Jpn. 68, 401-407 (1999).
[22] K. Hagita, S. Koseki, and K Takano. Relaxation of a Polymer Chain Confined in a Slit. J. Phys. Soc. Jpn. 68, 2144-2145 (1999).
[23] A. Milchev and K. Binder. Dynamics of Polymer Chains Confined in Slit-Like Pores. J. Phys. II (France) 6, 21-31 (1996).
[24] Sophie Lhuillier, Matthieu Gallopin, Bernard Gilquin, Sandrine Brasiles, Nathalie Lancelot, Guillaume Letellier, Mathilde Gilles, Guillaume Dethan, Elena V. Orlova, Joel Couprie, Paulo Tavares, and Sophie Zinn-Justin. Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc Natl Acad Sci USA 2009, 106 (21) 8507-8512.
[25] Jeffrey Chuang, Yacov Kantor, and Mehran Kardar. Anomalous dynamics of translocation. Phys.Rev. E 65, 011802 (2001).
[26] Ralf Metzler and Joseph Klafter. When translocation dynamics becomes anomalous. Biophysical Journal 85, 2776-2779 (2003).
[27] Kaifu Luo, Tapio Ala-Nissila, See-Chen Ying, and Aniket Bhattacharya. Heteropolymer translocation through nanopores. J. Chem. Phys. 126, 145101 (2007).
[28] Donshan Wei, Wen Yang, Xigao Jin, and Qi Liao. Unforced translocation of a polymer chain through nanopores: The solvent effect. J. Chem. Phys. 126, 204901 (2007).
[29] Aslin Izmitli, David C. Schwartz, Michael D. Graham, and Juan J. de Pablo. The effect of hydrodynamic interactions on the dynamics of DNA translocation through pores. J. Chem. Phys. 128, 085102 (2008).
[30] Jeremiah Nummela and Ioan Andricioaei. Energy landscape for DNA rotation and sliding through a phage portal. Biophysical Journal L29-L31 (2009).
[31] L. Rene Garcia and Ian J. Molineux. Translocation and specific cleavage of bacteriophage T7 DNA in vivo by EcoKI, Proc Natl Acad Sci USA 1999, 96 (22) 12430-12435.
[32] Valerie C. Pierre, Jens T. Kaiser, and Jacqueline K. Barton. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. Proc Natl Acad Sci USA 2007, 104 (2) 429-434.
[33] Peter J. Tummino, Jeffrey D. Scholten, Patricia J. Harvey, Tod P. Holler, Lisa Maloney, Rocco Gogliotti, John Domagala, and Donald Hupe. The in vitro ejection of zinc from human immunodeficiency virus (HIV) type 1 nucleocapsid protein by disulfide benzamides with cellular anti-HIV activity. Proc Natl Acad Sci USA 1996, 93 969-973.
[34] Yu. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson. Kinetics at the collapse transition of homopolymers and random copolymers. J. Chem. Phys. 103 (11) 4807- 4817 (1995).
[35] Shelley Tzlil, James T. Kindt, William M. Gelbart, and Avinoam Ben-Shaul. Forces and pressures in DNA packaging and release from viral capsids. Biophysical Journal 84 1616-1627 (2003).
[36] Carlos Sao-Jose, Marta de Frutos, Eric Raspaud, Marlo A. Santos and Paulo Tavares. Pressure built by DNA packaging inside virions: enough to drive DNA ejection in vitro, largely insufficient for delivery into the bacterial cytoplasm. J Mol. Biol. 374 346-355 (2007).
[37] Meerim Jeembaeva, Martin Castelnovo, Frida Larsson and Alex Evilevitch. Osmotic pressure: resisting or promoting DNA ejection from phage? J Mol. Biol. 381 310-323 (2008).
[38] Victor Gonzalez-Huici, Margarita Salas and Jose M Hermoso. The push-pull mechanism of bacteriophage □29 DNA ejection. Molecular Microbiology 52(2) 529-540 (2004).
[39] Sarah Koster, Alex Evilevitch, Meerim Jeembaeva, and David A. Weitz. Influence of internal capsid pressure on viral infection by phage □. Biophysical Journal 97 1525-1529 (2009).
[40] Amelie Leforestier and Francoise Livolant. Structure of toroidal DNA collapsed inside the phage capsid. Proc Natl Acad Sci USA 2009, 106 (23) 9157-9162.
[41] C. Micheletti, D. MArenduzzo, E. Orlandini, and D. W. Sumners. Simulation of knotting in confined circular DNA. Biophysical Journal 95, 3591-3599 (2008).
[42] Hannah Farmer, Nuala McCabe, Christopher J. Lord, Andrew N. J. Tutt, Damian A. Johnson, Tobias B. Richardson, Manuela Santarosa, Krystyna J. Dillon, Ian Hickson4, Charlotte Knights, Niall M. B. Martin, Stephen P. Jackson, Graeme C. M. Smith4 & Alan Ashworth. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434 917-921 (2005).
[43] Amélie Leforestier, and Francoise Livolant. The Bacteriophage Genome Undergoes a Succession of Intracapsid Phase Transitions upon DNA Ejection. Journal of Molecular Biology 396(2) 384-395 (2010).
[44] K. P. Santo and K. L. Sebastian. Dynamics of loop formation in a semiflexible polymer. Phys. Rev. E 80(6), 061801 (2009).
[45] A. Szabo, K. Schulten and Z. Schulten. First passage time approach to diffusion controlled reactions. J. Chem. Phys. 72(8), 4350-4357 (1980).
[46] Masao Doi. Diffusion-controlled reaction of polymers. Chemical Physics 9, 455-466 (1975).
Chapter 4
[1] J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophysical Journal 90, 4538-4545 (2006).
[2] S. L. Levy and H. G. Craighead. DNA manipulation, sorting, and mapping in nanofluidic systems. Chem. Soc. Rev. 39, 1133-1152 (2010).
[3] Szu-Yuan Lee and Yi-Kuang Chuang, The Evolution and Development of DNA Sequencing Technology, J Biomed Lab Sci., 22(2), 49-58 (2010).
[4] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977, 74 (12) 5463-5467.
[5] J. Shendure and H. Ji, Next-generation DNA sequencing. Nat Biotechnol 26(10), 1135-1145 (2008).
[6] E. R. Mardis. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9, 387-402 (2008).
[7] J. Han, J. Fu, and R. B. Schoch. Molecular sieving using nanofilters: past, present and future. Lab Chip. 8(1), 23-33 (2008).
[8] Y. -W. Lin, M. -F. huang and H. -T. Chang. Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA. Electrophoresis 26, 320-330 (2005).
[9] J. Fu, J. Yoo, and J. Han. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys. Rev. Lett. 97(1), 018103 (2006).
[10] J. Fu, P. Mao, and J. Han. A nanofilter array chip for fats gel-free biomolecule separation. Appl. Phys. Lett. 87(26), 263902 (2005).
[11] Ben McNally, Alon Singer, Zhiliang Yu, Yingjie Sun, Zhiping Weng and Amit Meller. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10(6), 2237-2244 (2010).
[12] Venkat ram Dukkipati, Ji Hoon Kim, Stella W. Pang, and Ronald G. Larson. Protein-assisted stretching and immobilization of DNA molecules in a microchannel. Nano Lett. 6(11), 2499-2504 (2006).
[13] Harold Craighed. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387-393 (2006).
[14] Jamil El-Ali, Peter K. Sorger, and Klavs F. Jensen. Cells on chips. Nature 442, 403-411 (2006).
[15] O. B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, and E. C. Cox. Electrohydrodynamic stretching of DNA in confined environments. Phys. Rev. Lett. 80(12), 2737-2740 (1998).
[16] S. Jun and B. Mulder. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc Natl Acad Sci USA 2006, 103 (33) 12388-12393.
[17] Mark Bates, Michael Burns, and Amit Meller. Dynamics of DNA molecules in a membrane channel probed by active control techniques. Biophysical Journal 84, 2366-2372 (2003).
[18] Hendrick W. de Haan and Gary W. Slater. Mapping the variation of translocation □ scaling exponent with nanopores width. Phys. Rev. E 81, 051802 (2010).
[19] S. W. P. Turner, M. Cabodi, and H. G. Craighead. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys. Rev. Lett. 88(12), 128103 (2002).
[20] Walter Reisner, Keith J. Morton, Robert Riehn, Yan Mei Wang, Zhaoning Yu, Michael Rosen, James C. Sturm, Stephen Y. Chou, Erwin Frey, and Robert H. Austin. Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett. 94(19), 196101 (2005).
[21] P. G. de Gennes. Scaling concepts in polymer physics (Cornell University Press, Ithaca, NY, 1979).
[22] D. C. Morse. Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 2. Linear Response. Macromolecules 31, 7044 (1998).
[23] Angelo Cacciuto and Erik Luijten. Self-avoiding flexible polymer under spherical confinement. Nano lett. 6(5), 901-905 (2006).
[24] Zhehui Jin, Shuanglian Zhao, and Jianzhong Wu. Entropic forces of single-chain confinement in spherical cavities. Phys. Rev. E 82, 041805 (2010).
[25] Alexander Yu. Grosberg. Critical exponents for random knots. Phys. Rev. Lett. 85, 2858-3861 (2000).
Chapter 5
[1] A. Y. Grosberg, and A. R. Khokhlov, Statistical Physics of Macromolecules, (AIP Press, NY) 1994.
[2] P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, NY) 1979.
[3] Y. C. Chou, E. Cho, T.-h. Chou, and T. M. Hong. Elasticity transition and loop formation in vibrated bead chains: A simulation of polymer chains. Eur. Phys. J. E 29, 157-161 (2009).
[4] Kevin Safford, Yacov Kantor, Mehran Kardar, and Atshad Kudrolli. Structure and dynamics of vibrated granular chains: comparison to equilibrium polymers. Phys. Rev. E 79, 061304 (2009).
[5] A. Halperin and Paul M. Goldbart. Early stages of homopolymer collapse. Phys. Rev. E 61(1), 565-573 (2000).
[6] R. E. Ecke, Z. A. Daya, M. K. Rivera, E. Ben-Naim. Spontaneous spirals in vibrated granular chains. MRS Symposium Proceedings 759, 129 (2003).
[7] Jie Zhou, Zhong-Can Ou-Yang, and Haijun Zhou. Simulating the collapse transition of a two-dimensional semiflexible lattice polymer. J. Chem. Phys. 128, 124905 (2008).
[8] B. Bammers and J. S. Olafsen. Polymerlike folding of a two-dimensional granular chain in water. Chaos 14(4), S9 (2004).
[9] Benjamin Chu, Qicong Ying, and Alexander Yu. Grosberg. Two-stage kinetics of single-chain collapse. Polystyrene in Cyclohexane. Macromolecules 28(1), 180-189 (1995).
[10] X. Wang, X. Qiu, and C. Wu, Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly (N-isopropylacrylamide) Homopolymer Chain in Water, Macromolecules 31(9), 2972-2976 (1998).
[11] M. Nakata, and T. Nakagawa, Kinetics of coil–globule transition of poly(methyl methacrylate) in isoamyl acetate, J. Chem. Phys. 110(5), 2703-2710 (1999).
[12] N. Kikuchi, J. F. Ryder, C. M. Pooley, and J. M. Yeomans, Kinetics of the polymer collapse transition: The role of hydrodynamics, Phys. Rev. E 71, 061804 (2005).
[13] P. W. Zhu, and D. H. Napper, The longer time collapse kinetics of interfacial poly(N-isopropylacrylamide) in water, J. Chem. Phys. 106(15), 6492-6498 (1997).
[14] K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov, Large Discrete Transition in a Single DNA Molecule Appears Continuous in the Ensemble, Phys. Rev. Lett. 76, 3029-3031 (1996).
[15] A. Y. Grosberg, and D. V. Kuznetsov, Single-chain collapse or precipitation? Kinetic diagram of the states of a polymer solution, Macromolecules 26(16), 4249-4251 (1993).
[16] Yu. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson. Kinetic laws at the collapse transition of a homopolymer. J. Chem. Phys. 104(9), 3338-3347 (1996).
[17] Yu. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson. Kinetics at the collapse transition Gaussian self-consistent approach. J. Chem. Phys. 102(4), 1816-1823 (1995).
[18] Yu. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson. Kinetics at the collapse transition of homopolymers and random copolymers. J. Chem. Phys. 103(11), 4807-4818 (1995).
[19] Natsuhiko Yoshinaga. Folding and unfolding kinetics of a single semiflexible polymer. Phys. Rev. E 77, 061805 (2008).
[20] L. I. Klushin. Kinetics of a homopolymer collapse: Beyond the Rouse-Zimm scaling. J. Chem. Phys. 108(18), 7917-7920(1998).
[21] Kenichi Yoshikawa and Yukiko Matsuzawa. Nucleation and growth in single DNA molecules. J. Am. Chem. Soc. 118, 929-930 (1996).
[22] I. M. Lifshitz, and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19, 35 (1961).
[23] J. H. Yao, K. R. Elder, H. Guo, and M. Grant, Ostwald ripening in two and three dimensions, Phys. Rev. B 45, 8173-8176 (1992).
[24] Y. C. Chou and W. I. Goldburg. Phase separation and coalescence in critically quenched isobutyric-water and 2, 6-lutidine-water mixtures. Phys. Rev. A 20(5), 2105-2113 (1979).
[25] J. S. Langer, M. Bar-on, and H. D. Miller, New computational method in the theory of spinodal decomposition, Phys. Rev. A 11, 1417-1429, (1975).
[26] T. Sarkar, A. S. Petrov, J. R. Vitko, C. T. Santai, S. C. Harvey, I. Mukerji, and N. V. Hud, Integration Host Factor (IHF) Dictates the Structure of Polyamine-DNA Condensates: Implications for the Role of IHF in the Compaction of Bacterial Chromatin, Biochemistry 48, 667 (2009).
[27] P. G. de Gennes, Kinetics of collapse for a flexible coil, J. Phys. Lett. 46, L639 (1985).
[28] N. C. Wong, and C. M. Knoble, Light-scattering studies of phase separation in isobutyric acid + water mixtures: Hydrodynamic effects, Phys. Rev. A 24, 3205-3211 (1981).
[29] K. Binder, and D. Stauffer, Theory for the Slowing Down of the Relaxation and Spinodal Decomposition of Binary Mixtures, Phys. Rev. Lett. 33. 1006-1009 (1974).
[30] Jian Xu, Zhiyuan Zhu, Shizhong Luo, ChiWu, and Shiyong Liu. First observation of two-stage collapsing kinetics of a single synthetic polymer chain. Phys. Rev. Lett. 96, 027802 (2006).
[31] Jiqun Yu, Zhulun Wang and Benjamin Chu, Kinetic study of coil-to-globule transition. Macromolecules 25, 1618-1620 (1992).
[32] N. Yoshinaga, K. Yoshikawa and T. Ohta. Different pathways in mechanical unfolding/folding cycle of a single semiflexible polymer. Eur. Phys. J. E 17, 485-491 (2005).
[33] A. B. Bortz, M. H. Kalos, J. L. Lebowitz, and M. A. Zendejas. Time evolution of a quenched binary alloy: Computer simulation of a two-dimensional model system. Phys. Rev. B 10(2), 535-541 (1974).
[34] J. Marro, J. L. Lebowitz, and M. H. Kalos. Computer simulation of the time evolution of a quenched model alloy in the nucleation region. Phys. Rev. Lett. 43(4), 282-285 (1979).
[35] Haijun Zhou, Jie Zhou, Zhong-Can Ou-Yang, and Sanjay Kumar. Collapse transition of two-dimensional flexible and semiflexible polymers. Phys. Rev. Lett. 97, 158302 (2006).
[36] T. A. Witten. Polymer solutions: A geometric introduction. Reviews of Modern Physics 70(4), 1531-1544 (1998).
[37] E. P. Favvas, and A. Ch. Mitropoulos, What is spinodal decomposition? J. of Eng. Sci. Tech. Rev. 1, 25-27(2008).
[38] Y. C. Chou and W. I. Goldburg. Angular distribution of light scattered from critically quenched liquid mixtures. Phys. Rev. A 23(2), 858-864 (1981).
[39] Hajime Tanaka. New coarsening mechanism for spinodal decomposition having droplet pattern in binary fluid mixture: Collision-induced collisions. Phys. Rev. Lett. 72(11), 1702-1705 (1994).