簡易檢索 / 詳目顯示

研究生: 陳力祺
Chen, Li-Chi
論文名稱: 高效能印刷型碲化鉍系熱電厚膜與模組製備研究
High-performance Bi-Te based thick films and thermoelectric devices prepared by screen printing technology
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 朱旭山
Chu, Hsu-Shen
饒達仁
Yao, Da-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 熱電厚膜印刷碲化鉍模組能源
外文關鍵詞: thermoelectric, thickfilm, print, Bi2Te3, module, energy
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料是能夠將熱能與電能互相轉換的綠色能源材料,常被用於廢熱回收及局部致冷等應用,其製備的熱電元件具有安靜、反應快速等特色。傳統的熱電元件係採用以熔煉長晶或粉末冶金等方法製備之熱電塊材,切割成小尺寸的熱電端腳後,再與金屬導線以串聯方式焊接於陶瓷基板上,形成一發電或致冷元件。此種製程由於切割及組裝方式的限制,容易造成材料浪費及模組空間無法完整利用,製造成本高昂且模組功率輸出無法最佳化。本研究將碲化鉍系熱電粉末摻雜適當的溶劑與黏結劑混合成熱電漿料,在選定的金屬與高分子基板上以模板印刷製程刷塗特定厚度之熱電厚膜,並透過壓力與溫度的調整來提昇印刷型熱電厚膜的性質。接著再以熱壓製程將P型與N型熱電厚膜組裝成熱電元件,利用熱壓製程中產生的介金屬化合物接合熱電厚膜材料與金屬電極以簡化模組組裝製程。另外,在熱電模組設計方面,我們以模擬軟體評估金屬電極寬度與接合方式對熱電模組功率輸出之影響,提供後續熱電厚膜模組製備及改良的方向。本實驗所製備之熱電厚膜其功率因子可達11.3 μW/cmK2,熱電厚膜模組可在17.7度的溫差下得到約9.7 μW 的最佳功率輸出,換算成模組效率因子為0.63 μW/cm^2∙K^2。


    Thermoelectric generation devices are able to convert waste heat into electricity. A typical thermoelectric module consists of paired p- and n-type semiconductor pellets that were sandwiched in between two ceramic plates. Generally, these tiny pellets are joined to metallic conductors on the ceramic plates by soldering. The whole fabrication process including pellet dicing, barrier plating and electrode soldering indeed is very time-consuming and costly. In this study, we present a printing-based process to prepare bismuth telluride thick films on a flexible substrate and demonstrate a solder-free process to make a generation module by connecting thermoelectric film and metallic electrode. Bismuth telluride based compounds were ground into fine powders and mixed with organic binders and solvent. The mixture was coated on a substrate by screen-printing and subsequently sintered using a hot-press technique. The p-type Bi-Sb-Te film exhibits a thermoelectric power factor of 11.3 μW/cmK2 at room temperature. To form a thermoelectric module, the contacting electrodes were directly joined to the printed film by forming a layer of intermetallic compound at the contact region through adjustment of sintering pressure and temperature. The thick film module can achieve matching load output power of 9.7 μW under a temperature difference of 17.7 K, and have the TE efficiency factor about 0.63 μW/cm^2∙K^2. The effect of film and contact properties on the performance of thermoelectric modules will be modeled and experimentally evaluated.

    壹、緒論 1 1.1研究背景 1 1.1.1材料熱電優值與能源轉換效率 2 1.1.2熱電材料與模組種類 3 1.2研究動機 5 貳、文獻回顧 6 2.1熱電材料厚度最佳化 6 2.2 熱電厚膜材料 12 2.2.1熱電厚膜特色 12 2.2.2熱電厚膜的優勢與應用 17 2.3熱電模組製程與結構探討比較 20 參、實驗設計 26 3.1熱電厚膜印刷製程 26 3.2熱電厚膜熱壓製程 27 3.3基板轉印 29 3.4熱電厚膜模組製備 30 3.5、熱電模組特性模擬與結構設計 31 3.6熱電厚膜性質與模組輸出量測 32 3.6.1厚膜電性量測 32 3.6.2微結構分析--SEM 38 3.6.3模組功率輸出量測 39 肆、碲化鉍系熱電厚膜製備與性質量測分析 40 4.1高分子熱重分析 40 4.2燒結溫度與壓力 41 4.2 基板材料選擇 44 伍、厚膜熱電模組組裝與輸出特性量測分析 53 5.1熱電厚膜模組接合製程 53 5.2、厚膜熱電模組結構模擬與效能評估 55 5.2.1 FlexPDE熱電模組模型建立 55 5.2.2 NiTe接點效應 57 5.2.3金屬電極寬度效應 58 5.3熱電厚膜模組效能量測分析 61 5.3.1 熱電模組內阻量測 61 5.3.2 熱電模組輸出功率量測 63 5.2.3熱電模組效率因子(TE efficiency factor) 66 陸、總結 67 柒、參考文獻 69

    [1] Snyder, G. J., & Toberer, E. S., Complex thermoelectric materials. Nature Materials, 7, 105-114. (2008)
    [2] Glatz, W., Muntwyler, S., & Hierold, C., Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sensors and Actuators A: Physical, 132, 337-345. (2006)
    [3] Strasser, M., Aigner, R., Lauterbach, C., Sturm, T. F., Franosch, M., & Wachutka, G., Micro-machined CMOS thermoelectric generators as on-chip power supply. Sensors and Actuators A: Physical, 114, 362-370. (2004)
    [4] Glatz, W., Schwyter, E., Durrer, L., & Hierold, C., Bi2Te3-based flexible micro thermoelectric generator with optimized design. Journal of Microelectromechanical Systems, 18, 763-772. (2009)
    [5] Navone, C., Soulier, M., Testard, J., Simon, J., & Caroff, T., Optimization and fabrication of a thick printed thermoelectric device. Journal of Electronic Materials, 40, 789-793. (2011)
    [6] Schwyter, E., Glatz, W., Durrer, L., & Hierold, C., Flexible micro thermoelectric generator based on electroplated Bi2+ xTe3− x. DTIP 2008, April. Symposium on 46-48. IEEE. (2008)
    [7] Chen, A., Madan, D., Wright, P. K., & Evans, J. W., Dispenser-printed planar thick-film thermoelectric energy generators. Journal of Micromechanics and Microengineering, 21, 104006. (2011)
    [8] Navone, C., Soulier, M., Plissonnier, M., & Seiler, A. L., Development of (Bi,Sb)2(Te,Se)3-based thermoelectric modules by a screen-printing process. Journal of Electronic Materials, 39, 1755-1759. (2010)
    [9] Cao, Z., Koukharenko, E., Torah, R. N., Tudor, J., & Beeby, S. P., Flexible screen printed thick film thermoelectric generator with reduced material resistivity. In Journal of Physics: Conference Series, 557, 012016). (2014) IOP Publishing
    [10] Wang, Z., Chen, A., Winslow, R., Madan, D., Juang, R. C., Nill, M., Evans J W & Wright, P. K., Integration of dispenser-printed ultra-low-voltage thermoelectric and energy storage devices. Journal of Micromechanics and Micro-engineering, 22, 094001. (2012)
    [11] Madan, D., Chen, A., Wright, P. K., & Evans, J. W., Dispenser printed composite thermoelectric thick films for thermoelectric generator applications. Journal of Applied Physics, 109, 034904. (2011)
    [12] We, J. H., Kim, S. J., Kim, G. S., & Cho, B. J., Improvement of thermoelectric properties of screen-printed Bi2Te3 thick film by optimization of the annealing process. Journal of Alloys and Compounds, 552, 107-110. (2013)
    [13] Madan, D., Wang, Z., Chen, A., Juang, R. C., Keist, J., Wright, P. K., & Evans, J. W., Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Applied Materials & Interfaces, 4, 6117-6124. (2012)
    [14] Bahk, J. H., Fang, H., Yazawa, K., & Shakouri, A., Flexible thermoelectric materials and device optimization for wearable energy harvesting. Journal of Materials Chemistry C, 3, 10362-10374. (2015)
    [15] Jo, S. E., Kim, M. K., Kim, M. S., & Kim, Y. J., Flexible thermoelectric generator for human body heat energy harvesting. Electronics Letters, 48, 1015-1017. (2012)
    [16] Weber, J., Potje-Kamloth, K., Haase, F., Detemple, P., Völklein, F., & Doll, T., Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensors and Actuators A: Physical, 132, 325-330. (2006)
    [17] Kim, M. K., Kim, M. S., Lee, S., Kim, C., & Kim, Y. J., Wearable thermoelectric generator for harvesting human body heat energy. Smart Materials and Structures, 23, 105002. (2014)
    [18] Yang, J., Aizawa, T., Yamamoto, A., & Ohta, T., Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75 prepared via BMA–HP method. Materials Chemistry and Physics, 70, 90-94. (2001)
    [19] Venkatasubramanian, R., Siivola, E., Colpitts, T., & O'quinn, B., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413, 597-602. (2001)
    [20] LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C., & Goodson, K. E., Material and manufacturing cost considerations for thermoelectrics. Renewable and Sustainable Energy Reviews, 32, 313-327. (2014)
    [21] Chen, W. J. & Liao, C. N., A study of electrical properties of Sn63Pb37 and Sn95.5Ag4Cu0.5 solder joint in thermoelectric module. 國立清華大學碩士論文, p.68 (2006)
    [22] Lan, Y. C., Wang, D. Z., Chen, G., & Ren, Z. F., Diffusion of nickel and tin in p-type (Bi, Sb)2Te3 and n-type Bi2(Te, Se)3 thermoelectric materials. Applied Physics Letters, 92, 101910. (2008)
    [23] Hayashi, S. F., Nakamura, T., Kageyama, K., & Takagi, H., Monolithic thermoelectric devices prepared with multilayer co-fired ceramics technology. Japanese Journal of Applied Physics, 49, 096505. (2010)
    [24] Funahashi, S., Nakamura, T., Kageyama, K., & Ieki, H., Monolithic oxide–metal composite thermoelectric generators for energy harvesting. Journal of Applied Physics, 109, 124509. (2011)
    [25] https://en.wikipedia.org/wiki/Hall_effect (Wikipedia-Hall effect)
    [26] Yadava, Y. P., & Singh, R. A., On the electrical transport in nickel telluride. Journal of Materials Science Letters, 4, 1421-1424. (1985)

    QR CODE