簡易檢索 / 詳目顯示

研究生: 陳柏文
Chen, Bo Wen
論文名稱: 高壓流體反溶劑法製備奈米銀複合膜
Preparation of Silver Nanocomposite Film by Compressed Fluid Anti-solvent
指導教授: 談駿嵩
Tan, Chung Sung
口試委員: 王竹方
蔣本基
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 59
中文關鍵詞: 壓縮流體反溶劑CO2膨脹溶液奈米銀複合材料
外文關鍵詞: compressed fluid antisolvent, CO2-expanded liquids, silver nanoparticles, composite
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先利用CO2膨脹溶液製備奈米銀,再加入聚甲基丙烯酸甲酯(Poly(methyl methacrylate), PMMA)後進行高壓流體反溶劑法,製得沉積於玻璃基材上之奈米銀複合物,再將之熱壓製成導電複合膜。在製備奈米銀溶液時,是以離子交換法將硝酸銀(Silver Nitrate, AgNO3)與異硬脂酸(Isosteric Acid)反應並分離後,得到前驅物異硬酯酸銀鹽(Silver Isosteric, AgISt),再將之溶於正己烷有機溶劑後,通入一定壓力的H2與CO2,形成CO2膨脹溶液後進行還原反應,如此可得到均勻分散的奈米銀溶液。接著以濃縮處理奈米銀溶液,將溶劑置換成甲苯,使奈米銀溶液與PMMA混合後,進行高壓流體反溶劑法使奈米銀與PMMA高分子共沉積至玻璃基板上形成複合物,再經超臨界乾燥去除薄膜上殘留的有機溶劑,可得到均勻分散的奈米銀複合物。以高壓反溶劑法製備沉積物的變數為壓力、溫度與升壓速度,由於這些變數均會影響奈米銀的分散與導電性,本研究遂使用實驗設計法獲得沉積製程變數的最佳化。研究結果顯示,最佳化的條件為:2000 psi、40 oC、75 psi/min,且複合沉積物在熱壓的條件為6.90 MPa與175 oC下進行,最後可得混摻比率含有12.75 vol%的銀的複材,其導電率為2.83 x 10-1 S/cm。利用此法製造複材的優勢為:(1)以高壓反溶劑法將奈米銀加入至高分子基質中,可維持奈米銀良好的分散性;(2)使用CO2膨脹溶液還原銀前驅物,得到粒徑小且均一的奈米銀顆粒;(3)超臨界CO2幾無表面張力,可避免沉積物在乾燥時導致結構的破壞;(4)後續處理沉積物時能在較低溫的條件下進行,可保持奈米銀的分散並形成導電通路,得到導電率高且低混摻比的複合膜。


    This project finished the preparation of silver nanoparticles in CO2-expanded liquids (CXL), and then add poly(methyl methacrylate) to synthesize composite by using compressed fluid anti-solvent technique. The precipitate of composite was in compression molding for preparing the conductive film. When the metal precursor (silver isosteric, AgISt) was prepared by ion exchange method from isosteric acid and silver nitrite first, it dissolved in hexane before adding hydrogen and carbon dioxide. The silver nanoparticles were reduced with hydrogen in CXL from the precursor, and it can be the well-disperse solution of silver nanoparticles. After the reduction, change solvent from hexane to toluene by rotary evaporator. The toluene solution was mixed with poly(methyl methacrylate). In the next step, put the solution mixture containing silver nanoparticles and poly(methyl methacrylate) in a high pressure gauge, then the pressure of carbon dioxide was gradually increased to let the solute co-precipitation onto a substrate, and supercritical carbon dioxide as a drying medium to extract residual solvent. Finally, the isosteric acid was eliminated from the precipitate by compression molding to form conductive composite. The factors containing pressure, temperature and rate of pressure rise, influenced the conductivity and the dispersity of composite. Design of experiment was used to determine the best condition for the anti-solvent. From the experiment data, the optimal operating conditions was 2,000 psi, 40 oC and 75 psi/min in anti-solvent, and 6.90 MPa, 175 oC in compression molding. In conclusion, we could get the composite with conductivity of 2.83 x 10-1 S/cm and silver content of 12.75 vol%. The advantages are: (1) as silver nanoparticles being added in a base of polymer by compressed anti-solvent, it maintain the dispersity of nanoparticles; (2) it would get small particle size and distribution of silver nanpaticle by using CXL to reduce metal precursor; (3) supercritical carbon dioxide prevent destruction of the composite structure in the drying process; (4) the precipitate was in a lower temperature to eliminate the dispersing agent like isosteric acid, and it can be higher conductivity with lower silver content.

    致謝辭 II 摘要 III Abstract IV 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 3 2-1 複合材料製備 3 2-2 利用高壓流體合成奈米銀粒子與複合薄膜 6 2-2-1超臨界流體簡介 6 2-2-2利用超臨界含浸法製備複合材料 8 2-2-3利用CO2膨脹液體製備奈米金屬懸浮液 9 2-2-4利用高壓流體反溶劑法製備複合薄膜 12 2-2-5沉積物後處理 17 2-3 實驗設計法 19 第三章 實驗裝置與操作流程 21 3-1 實驗藥品 21 3-2 實驗分析儀器 21 3-2-1紫外/可見光光譜儀(Ultraviolet and Visible Spectroscopy, UV-Vis) 21 3-2-2減弱全反射-傅立葉轉換紅外線光譜儀(ATR-FTIR) 22 3-2-3穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 22 3-2-4掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 22 3-2-5能量散佈光譜儀(Energy Dispersive Spectrometers, EDS) 23 3-2-6四點探針電阻儀 23 3-2-7超絕緣計(Super Megohmmeter, SM) 25 3-2-8熱重分析儀(Thermogravimetric Analyzer, TGA) 26 3-3 實驗流程 27 3-3-1配製前驅物異硬脂酸銀鹽(AgISt)之步驟 27 3-3-2以膨脹溶液還原異硬脂酸銀鹽(AgISt)之實驗裝置與步驟 28 3-3-3配製奈米銀與PMMA高分子混合液 29 3-3-4利用高壓反溶劑法製備複合薄膜之實驗裝置與步驟 30 3-3-5沉積物後處理 32 第四章 實驗結果與討論 33 4-1 AgISt合成分析 36 4-2 利用CO2膨脹溶液合成奈米銀 37 4-3 複材混摻比率的變化 40 4-4 壓力、溫度與升壓速度的影響 43 4-5 實驗設計法 46 4-6 複合沉積物後處理 50 第五章 結論與建議 54 參考文獻 56

    Akien, G. R., & Poliakoff, M. (2009). A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chemistry, 11(8), 1083-1100.
    Anand, M., Bell, P. W., Fan, X., Enick, R. M., & Roberts, C. B. (2006). Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds. The Journal of Physical Chemistry B, 110(30), 14693-14701.
    Bell, P. W., Anand, M., Fan, X., Enick, R. M., & Roberts, C. B. (2005). Stable dispersions of silver nanoparticles in carbon dioxide with fluorine-free ligands. Langmuir, 21(25), 11608-11613.
    Bhosale, P. S., & Stretz, H. A. (2008). Gold nanoparticle deposition using CO2 expanded liquids: effect of pressure oscillation and surface-particle interactions. Langmuir: the ACS journal of surfaces and colloids, 24(21), 12241-12246.
    Choi, D. Y., Kang, H. W., Sung, H. J., & Kim, S. S. (2013). Annealing-free, flexible silver nanowire–polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale, 5(3), 977-983.
    Chou, K. S., Huang, K. C., & Lee, H. H. (2005). Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method. Nanotechnology, 16(6), 779.
    Dixon, D. J., & Johnston, K. P. (1991). Molecular thermodynamics of solubilities in gas antisolvent crystallization. AIChE journal, 37(10), 1441-1449.
    Dixon, D. J., Johnston, K. P., & Bodmeier, R. A. (1993). Polymeric materials formed by precipitation with a compressed fluid antisolvent. AIChE Journal, 39(1), 127-139.
    Duggan, J. N. (2014b). The Synthesis and Tunable Processing of Magnetic and Metallic Nanoparticles in a Functional Solvent System (Doctoral dissertation, Auburn University).
    Duggan, J. N., & Roberts, C. B. (2014a). Aggregation and precipitation of gold nanoparticle clusters in carbon dioxide-gas-expanded liquid dimethyl sulfoxide. The Journal of Physical Chemistry C, 118(26), 14595-14605.
    Gallagher, P. M., Coffey, M. P., Krukonis, V. J., & Hillstrom, W. W. (1992). Gas anti-solvent recrystallization of RDX: formation of ultra-fine particles of a difficult-to-comminute explosive. The Journal of Supercritical Fluids, 5(2), 130-142.
    Goyal, A., Kumar, A., Patra, P. K., Mahendra, S., Tabatabaei, S., Alvarez, P. J., John, G., & Ajayan, P. M. (2009). In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films. Macromolecular rapid communications, 30(13), 1116-1122.
    Hasell, T., Lagonigro, L., Peacock, A. C., Yoda, S., Brown, P. D., Sazio, P. J. A., & Howdle, S. M. (2008). Silver nanoparticle impregnated polycarbonate substrates for surface enhanced Raman spectroscopy. Advanced Functional Materials, 18(8), 1265-1271.
    Hsieh, H. T., Chin, W. K., & Tan, C. S. (2010). Facile synthesis of silver nanoparticles in CO2-expanded liquids from silver isostearate precursor. Langmuir, 26(12), 10031-10035.
    Hsu, R. Y., Tan, C. S., & Chen, J. M. (2002). Formation of micron‐sized cycloolefin copolymer from toluene solution using compressed HFC‐134a as antisolvent. Journal of applied polymer science, 84(9), 1657-1668.
    Huang, Y.C., Yen C.H., Lin, H.W., Tan, C.S., (2014). Direct preparation of silver nanoparticles and thin films in CO2-expanded hexane. Journal of Supercritical Fluids, 89, 137-142.
    Jessop, P. G., & Subramaniam, B. (2007). Gas-expanded liquids. Chemical reviews, 107(6), 2666-2694.
    Jouni, M., Boudenne, A., Boiteux, G., Massardier, V., Garnier, B., & Serghei, A. (2013). Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polymer Composites, 34(5), 778-786.
    Jung, I., Jo, Y. H., Kim, I., & Lee, H. M. (2012). A Simple Process for Synthesis of Ag Nanoparticles and Sintering of Conductive Ink for Use in Printed Electronics. Journal of electronic materials, 41(1), 115-121.
    Lee, H. H., Chou, K. S., & Shih, Z. W. (2005). Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives. International Journal of Adhesion and Adhesives, 25(5), 437-441.
    Li, C. C., Chang, S. J., Su, F. J., Lin, S. W., & Chou, Y. C. (2013). Effects of capping agents on the dispersion of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 419, 209-215.
    Lin, I., Liang, P. F., & Tan, C. S. (2010a). Precipitation of submicrometer‐sized poly (methyl methacrylate) particles with a compressed fluid antisolvent. Journal of Applied Polymer Science, 117(2), 1197-1207.
    Lin, I., Liang, P. F., & Tan, C. S. (2010b). Preparation of polystyrene/poly (methyl methacrylate) blends by compressed fluid antisolvent technique. The Journal of Supercritical Fluids, 51(3), 384-398.
    Liu, D., Zhang, J., Han, B., Fan, J., Mu, T., Liu, Z., Wu, W., & Chen, J. (2003). Effect of compressed CO2 on the properties of AOT reverse micelles studied by spectroscopy and phase behavior. Journal of Chemical Physics, 119(9), 4873-4878.
    Liu, J., Anand, M., & Roberts, C. B. (2006). Synthesis and extraction of β-D-glucose-stabilized Au nanoparticles processed into low-defect, wide-area thin films and ordered arrays using CO2-expanded liquids. Langmuir, 22(9), 3964-3971.
    McLeod, M. C., Kitchens, C. L., & Roberts, C. B. (2005). CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films. Langmuir, 21(6), 2414-2418.
    Montgomery, D. C., & Montgomery, D. C. (1984). Design and analysis of experiments (Vol. 7). New York: Wiley.
    Nalawade, S. P., Picchioni, F., & Janssen, L. P. B. M. (2006). Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progress in Polymer Science, 31(1), 19-43.
    Pavlović, M. M., Pavlović, M. G., Ćosović, V., Bojanić, V., Nikolić, N. D., & Aleksić, R. (2014). Influence of electrolytic copper powder particle morphology on electrical conductivity of lignocellulose composites and formation of conductive pathways. Int. J. Electrochem. Sci, 9, 8355-8366.
    Pinto, G., Maaroufi, A. K., Benavente, R., & Pereña, J. M. (2011). Electrical conductivity of urea–formaldehyde–cellulose composites loaded with copper. Polymer Composites, 32(2), 193-198.
    Prasad, M. D., & Krishna, M. G. (2014). Facile green chemistry based synthesis and properties of free standing Au and Ag-PMMA films. ACS Sustainable Chemistry & Engineering.
    Ramesh, G. V., Porel, S., & Radhakrishnan, T. P. (2009). Polymer thin films embedded with in situ grown metal nanoparticles. Chemical Society Reviews, 38(9), 2646-2656.
    Reverchon, E., & Adami, R. (2013). Supercritical assisted atomization to produce nanostructured chitosan-hydroxyapatite microparticles for biomedical application. Powder Technology, 246, 441-447.
    Saunders, S. R., & Roberts, C. B. (2009). Size-selective fractionation of nanoparticles at an application scale using CO2 gas-expanded liquids. Nanotechnology, 20(47), 475605.
    Saunders, S. R., & Roberts, C. B. (2011). Tuning the precipitation and fractionation of nanoparticles in gas-expanded liquid mixtures. The Journal of Physical Chemistry C, 115(20), 9984-9992.
    Saunders, S. R., & Roberts, C. B. (2012). Nanoparticle separation and deposition processing using gas expanded liquid technology. Current Opinion in Chemical Engineering, 1(2), 91-101.
    Singho, N. D., Johan, M. R., & Lah, N. A. C. (2014). Temperature-dependent properties of silver-poly (methylmethacrylate) nanocomposites synthesized by in-situ technique. Nanoscale research letters, 9(1), 1-6.
    Tan, C. S., & Chang, W. W. (1998). Precipitation of polystyrene from toluene with HFC-134a by the GAS process. Industrial & engineering chemistry research, 37(5), 1821-1826.
    Tan, C. S., & Lin, H. Y. (1999). Precipitation of polystyrene by spraying polystyrene-toluene solution into compressed HFC-134a. Industrial & engineering chemistry research, 38(10), 3898-3902.
    Tee, D. I., Mariatti, M., Azizan, A., See, C. H., & Chong, K. F. (2007). Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites. Composites Science and Technology, 67(11), 2584-2591.
    Vengsarkar, P. S., & Roberts, C. B. (2013). Effect of ligand and solvent structure on size-selective nanoparticle dispersibility and fractionation in gas-expanded liquid (GXL) systems. The Journal of Physical Chemistry C, 117(27), 14362-14373.
    Vo, D. Q., Shin, E. W., Kim, J. S., & Kim, S. (2010). Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange. Langmuir, 26(22), 17435-17443.
    Von White, G., Provost, M. G., & Kitchens, C. L. (2012). Fractionation of surface-modified gold nanorods using gas-expanded liquids. Industrial & Engineering Chemistry Research, 51(14), 5181-5189.
    Xie, X. L., Mai, Y. W., & Zhou, X. P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering: R: Reports, 49(4), 89-112.
    Yin, J. Z., & Tan, C. S. (2006). Solubility of hydrogen in toluene for the ternary system H2+ CO2+ toluene from 305 to 343K and 1.2 to 10.5 MPa. Fluid phase equilibria, 242(2), 111-117.
    Yu, Y. H., Ma, C. C. M., Teng, C. C., Huang, Y. L., Lee, S. H., Wang, I., & Wei, M. H. (2012). Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Materials Chemistry and Physics, 136(2), 334-340.
    Yu, Y. H., Ma, C. C. M., Yuen, S. M., Teng, C. C., Huang, Y. L., Wang, I., & Wei, M. H. (2010). Morphology, electrical, and rheological properties of silane‐modified silver nanowire/polymer composites. Macromolecular Materials and Engineering, 295(11), 1017-1024.
    林新惟,(2014),“利用綠色溶劑高壓二氧化碳與水進行催化反應與奈米材料製備”, 博士論文,國立清華大學化學工程研究所。
    林義翔,(2009),“以超(次)臨界流體技術製備複材及量測CO2膨脹溶液中之擴散係數”, 博士論文,國立清華大學化學工程研究所。
    黃宜琤,(2012),“利用高壓流體反溶劑法製備奈米銀膜”, 碩士論文,國立清華大學化學工程研究所。
    劉泓志,(2013),“以超臨界CO2合成奈米石墨烯片/奈米碳管/環氧樹脂複合材料”, 碩士論文,國立清華大學化學工程研究所。
    謝賢德,(2011),“以超臨界二氧化碳輔助分散銀粒子及以異硬脂酸金屬鹽為前驅物應用濕式化學法製備奈米銀及奈米硫化金屬之研究”, 博士論文,國立清華大學化學工程研究所。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE