研究生: |
丁翊涵 Ting, Yi Han |
---|---|
論文名稱: |
金屬誘導膠原蛋白模擬胜肽自組裝與其結構對酯類水解反應之催化活性探討 Metal-Induced Self-Assembly of Collagen-Mimetic Peptides and Their Catalytic Activity for Ester Hydrolysis |
指導教授: |
洪嘉呈
Horng, Jia Cherng |
口試委員: |
王聖凱
Wang, Sheng Kai 許馨勻 Hsu, Hsin Yun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 膠原蛋白 、自組裝 、金屬 、酯類水解 |
外文關鍵詞: | collagen, self-assembly, metal, ester hydrolysis |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠原蛋白是哺乳動物中含量最多的蛋白質,已廣泛應用於生醫材料上。為增加其在生醫材料上的應用性,許多研究在尋找有效的製備方法,來促使短鏈的膠原蛋白模擬胜肽自組裝成高階結構。在本研究的第一部分中,我們將組胺酸(His)引入膠原蛋白模擬胜肽,藉由組胺酸與金屬的配位作用促進膠原蛋白模擬胜肽自組裝成高階超分子結構。我們使用(POG)9為基底胜肽,藉著在不同位置置入His探討修飾在胜肽兩端組胺酸的有無,以及中間置換的個數對於整體自組裝速率和結構的影響。實驗結果顯示,胜肽兩端的組胺酸之導入有助於加速自組裝,而且中間的組胺酸可以幫助側向生長形成較立體的結構。相較之下,只有中間做組胺酸置換的胜肽,在自組裝上需要長時間的延遲期,因此會有較單一方向的聚集而形成較緊密有序的薄片結構。雖然,我們對於膠原蛋白的自組裝過程尚不完全清楚,但在我們的研究中可以發現胜肽上組胺酸置換的位置及數目,對於自組裝速度及結構上均有明顯的影響,希望這樣的結果可以對未來膠原蛋白自組裝設計有更多的了解及幫助。
在第二部分的實驗,我們引入了鋅金屬酶具有水解催化活性的概念,設計出類似於碳酸酐酶的催化配位結構,利用三股螺旋胜肽兩端的組胺酸可以提供較集中的配位基來與金屬作用,進而作為催化酯類水解的活性位置。實驗結果發現在中性環境下所得到的催化效率普遍不佳,而是要在大於可以使組胺酸側鏈去質子化的pH環境下,才可以觀察到顯著的催化效果。而在高pH值9.75且沒有金屬添加的情況下,HG(POG)4(PHG)(POG)4GH胜肽鏈具有卓越的催化效率,較以往研究中所報導的三股捲曲螺旋 (coiled-coil) 高出三倍,此結果有助於未來以膠原蛋白三股螺旋作為基底的酯類水解催化劑之發展。
Collagen is the most abundant protein in mammals and has been widely used in biomedical materials. Searching for an effective way to assemble short collagen mimetic peptides (CMPs) into a high order structure has received many attentions and been an emerging research topic for increasing biomaterial applicability. In the first part of this thesis, we have incorporated histidine (His) into CMPs to promote their self-assembly into supramolecular structures via His-metal coordination. In this study, we used (POG)9 as the parent peptide to design a series of CMPs with His residues incorporated into different positions. Our aim was to investigate the effects of the number and location of His residues on the self-assembly of CMPs. The results showed that incorporting His residues into the ends of a CMP could speed the self-assembly process but the assemblies were less ordered. In contrast, the CMPs without His residues at their ends could assemble into a more ordered and microflorettes like structures though the assembly process was very slow. Although we were not able to clarify the self-assembly process of collagen, we did find the impact of the location of His replacement on the rate of self-assembly and the morphology of assemblies. Our results may be useful and helpful for the future development of collagen-related materials.
In the second part of the experiment, we mimicked the active site of zinc metalloenzymes to design metal-CMPs assemblies as catalysts for ester hydrolysis. We used the His residues at both ends of the triple helix as the ligands to coordinate with metal ions and serve as the catalytic active site for ester hydrolysis. It is analogous to the active site of the zinc metalloenzyme carbonic anhydrase (CA). Our results indicated that the catalytic efficiency of the designed peptides was not good at neutral pH, but increased significantly at higher pH values, reflecting the deprotonation of a His side chain. In addition, at pH 9.75 and without the addition of metal, HG(POG)4(PHG)(POG)4GH peptide exhibited an excellent catalytic efficiency, which is three times greater than the previous reported three strained coiled-coils. And these results may be helpful for the development of catalysts for the ester hydrolysis with the collagen triple helix as the based peptide.
1. Prockop, D. J., and Kivirikko, K. I. (1995) Collagens: molecular biology, diseases, and potentials for therapy, Annu Rev Biochem 64, 403-434.
2. Rich, A., and Crick, F. H. (1961) The molecular structure of collagen, J Mol Biol 3, 483-506.
3. Cowan, P. M., McGavin, S., and North, A. C. (1955) The polypeptide chain configuration of collagen, Nature 176, 1062-1064.
4. Bella, J., Brodsky, B., and Berman, H. M. (1995) Hydration structure of a collagen peptide, Structure 3, 893-906.
5. Okuyama, K., Nagarajan, V., and Kamitori, S. (1999) 7/2-Helical model for collagen-evidence from model peptides, Proc Indian Acad Sci 111, 19-34.
6. Okuyama, K. (2008) Revisiting the molecular structure of collagen, Connect Tissue Res 49, 299-310.
7. Bella, J., Eaton, M., Brodsky, B., and Berman, H. M. (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution, Science 266, 75-81.
8. Hinderaker, M. P., and Raines, R. T. (2003) An electronic effect on protein structure, Protein Sci 12, 1188-1194.
9. Privalov, P. L. (1982) Stability of proteins. Proteins which do not present a single cooperative system, Adv Protein Chem 35, 1-104.
10. Brodsky, B., and Ramshaw, J. A. (1997) The collagen triple-helix structure, Matrix Biol 15, 545-554.
11. Sakakibara, S., Inouye, K., Shudo, K., Kishida, Y., Kobayashi, Y., and Prockop, D. J. (1973) Synthesis of (Pro-Hyp-Gly)n of defined molecular weights Evidence for the stabilization of collagen triple helix by hydroxypyroline, Biochim Biophys Acta 303, 198-202.
12. Persikov, A. V., Ramshaw, J. A., Kirkpatrick, A., and Brodsky, B. (2000) Amino acid propensities for the collagen triple-helix, Biochemistry 39, 14960-14967.
13. Whitesides, G. M., and Boncheva, M. (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components, Proc Natl Acad Sci U S A 99, 4769-4774.
14. Selkoe, D. J. (2004) Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases, Nat Cell Biol 6, 1054-1061.
15. Stefani, M., and Dobson, C. M. (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution, J Mol Med (Berl) 81, 678-699.
16. Paramonov, S. E., Gauba, V., and Hartgerink, J. D. (2005) Synthesis of Collagen-like Peptide Polymers by Native Chemical Ligation, Macromolecules 38, 7555-7561.
17. Kotch, F. W., and Raines, R. T. (2006) Self-assembly of synthetic collagen triple helices, Proc Natl Acad Sci U S A 103, 3028-3033.
18. Cejas, M. A., Kinney, W. A., Chen, C., Leo, G. C., Tounge, B. A., Vinter, J. G., Joshi, P. P., and Maryanoff, B. E. (2007) Collagen-related peptides: self-assembly of short, single strands into a functional biomaterial of micrometer scale, J Am Chem Soc 129, 2202-2203.
19. Rele, S., Song, Y., Apkarian, R. P., Qu, Z., Conticello, V. P., and Chaikof, E. L. (2007) D-periodic collagen-mimetic microfibers, J Am Chem Soc 129, 14780-14787.
20. Chen, C. C., Hsu, W., Kao, T. C., and Horng, J. C. (2011) Self-assembly of short collagen-related peptides into fibrils via cation- interactions, Biochemistry 50, 2381-2383.
21. Pires, M. M., and Chmielewski, J. (2009) Self-assembly of collagen peptides into microflorettes via metal coordination, J Am Chem Soc 131, 2706-2712.
22. Przybyla, D. E., and Chmielewski, J. (2008) Metal-triggered radial self-assembly of collagen peptide fibers, J Am Chem Soc 130, 12610-12611.
23. Pires, M. M., Przybyla, D. E., and Chmielewski, J. (2009) A metal-collagen peptide framework for three-dimensional cell culture, Angew Chem Int Ed Engl 48, 7813-7817.
24. Hsu, W., Chen, Y. L., and Horng, J. C. (2012) Promoting self-assembly of collagen-related peptides into various higher-order structures by metal-histidine coordination, Langmuir 28, 3194-3199.
25. Werten, M. W., Teles, H., Moers, A. P., Wolbert, E. J., Sprakel, J., Eggink, G., and de Wolf, F. A. (2009) Precision gels from collagen-inspired triblock copolymers, Biomacromolecules 10, 1106-1113.
26. Roat-Malone, R. M. (2002) Bioinorganic Chemistry : a short course, 1st ed., Hoboken, N.J. : Wiley. 348p
27. Crichton, R. R. (2008) Biological inorganic chemistry : an introduction, 1st ed., Amsterdam ; Boston : Elsevier. 369p
28. 徐維. 利用組胺酸-金屬配位鍵與cation-π作用力來進行膠原蛋白自組裝之探討. 碩士學位論文, 國立清華大學, 2011
29. Aggeli, A., Bell, M., Boden, N., Keen, J. N., Knowles, P. F., McLeish, T. C., Pitkeathly, M., and Radford, S. E. (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes, Nature 386, 259-262.
30. Altunbas, A., Lee, S. J., Rajasekaran, S. A., Schneider, J. P., and Pochan, D. J. (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles, Biomaterials 32, 5906-5914.
31. Rufo, C. M., Moroz, Y. S., Moroz, O. V., Stohr, J., Smith, T. A., Hu, X., DeGrado, W. F., and Korendovych, I. V. (2014) Short peptides self-assemble to produce catalytic amyloids, Nat Chem 6, 303-309.
32. Zastrow, M. L., and Pecoraro, V. L. (2013) Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes, J Am Chem Soc 135, 5895-5903.
33. 鄭琬蓉. 利用組胺酸-金屬配位作用來進行膠原蛋白自組裝之探討. 碩士學位論文, 國立清華大學, 2013
34. Xu, F., Li, J., Jain, V., Tu, R. S., Huang, Q., and Nanda, V. (2012) Compositional control of higher order assembly using synthetic collagen peptides, J Am Chem Soc 134, 47-50.
35. Berova, N., Nakanishi, K., and Woody, R. W. (2000) Circular dichroism: Principles and Applications, 2nd ed., New York : Wiley-VCH. 912p
36. Greenfield, N. J. (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions, Nat Protoc 1, 2527-2535.
37. 陳家全, 李家維, and 楊瑞森 (1991) 生物電子顯微學, 1st ed., 全華圖書. 266p
38. 羅聖全. (2013) 掃瞄式電子顯微鏡 (SEM), 科學研習, 52-55.
39. Harding, S. E., and Jumel, K. (2001) Light scattering, Current Protocols in Protein Science Chapter 7, Unit 7.8.
40. Merrifield, B. (1986) Solid phase synthesis, Science 232, 341-347.
41. Chan, W. C., and White, P. D. (2000) Fmoc Solid Phase Peptide Synthesis : a practical approach, New York : Oxford University Press. 346p
42. Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L., and Raines, R. T. (2001) Conformational stability of collagen relies on a stereoelectronic effect, J Am Chem Soc 123, 777-778.
43. Leonard, D. W., and Meek, K. M. (1997) Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma, Biophys J 72, 1382-1387.
44. Chen, Y. S., Chen, C. C., and Horng, J. C. (2011) Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide, Biopolymers 96, 60-68.
45. Kar, K., Wang, Y. H., and Brodsky, B. (2008) Sequence dependence of kinetics and morphology of collagen model peptide self-assembly into higher order structures, Protein Sci 17, 1086-1095.
46. Michaelis, L., and Menten, M. L. (1913) Die kinetik der invertinwirkung, Biochemitry Z 49, 333-369.
47. Przybyla, D. E., and Chmielewski, J. (2010) Metal-triggered collagen peptide disk formation, J Am Chem Soc 132, 7866-7867.