研究生: |
黎光日 Le Quang Nhat |
---|---|
論文名稱: |
分子在表面之聚合反應 On-Surface Polymerization of 3,10-Di(Bromomethyl)-[5]Phenacene on Ag(111) |
指導教授: |
霍夫曼
Hoffmann, Germar |
口試委員: |
徐斌睿
Hsu, Pin-Jui 林俊良 Lin, Chun-Liang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 掃描隧道顯微鏡 、表面合成 、Wurtz反應 、3,10-二(溴甲基)-[5]菲並苯 |
外文關鍵詞: | Scanning Tunneling Microscope/Spectroscopy (STM/STS), On-Surface synthesis, Wurtz reaction, 3,10- Di(Bromomethyl)-[5]Phenacene |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在經典化學中(即基於溶液的化學),有機分子(產物)是透過幾個步驟從較
簡單的,即較小的有機分子(所謂的前驅物)。通常,這些反應僅在特定催化物
質存在的情況下發生。這些從前體到產物的反應通常涉及諸如通過催化劑去除
設計的端基、然後將另一種前體鍵合到由此活化的位點等步驟。
化學設計的一種新方法是表面合成(OSS),即在不存在溶劑的情況下充當
催化劑在表面上合成分子.因此,化學反應偏離基於溶液化學的結果。它有
一定的缺點,但也有優點.特別是,與這裡相關的是OSS中的環境是明確定義
的,允許透過整套物理方法研究反應過程。這分別是化學家(用於前體設計)
和物理學家密切合作的領域。
脫鹵反應-C-X 鍵的斷裂(X代表鹵素)-與C-C偶聯反應結合,是第一
個OSS 程序,於2007 年實驗實現[1]。其中,C是C6 環的成員(Ullmann-型
耦合)。這項研究隨著2010年石墨烯奈米帶的實現而向前推進[2]。作為透過
表面合成來建構共價C-C鍵和奈米結構的靈活途徑,它引起了極大的關注[3]。
微鏡(AFM)[6][7]。
此領域的常見技術是超高真空低溫掃描穿隧顯微鏡(STM)[4][5] 和原子力顯
在本論文中,我們成功地在室溫下活化了催化Ag(111)表面上的3,10
Di(Bromomethyl)-[5]Phenacene末端溴甲基中的C-Br鍵,即 C6-CH2-Br 配體
(Wurtz 型偶合). 隨後,我們在 250◦C 下實現了有機金屬結構向共價產
物的轉變。特別是,過熱加熱至300℃後,端基碳之間形成長聚合物鏈。
更有趣的是,成功活化溴甲基中的C-H鍵,在聚合物鏈中形成支化結構,具
體而言,兩個或三個聚合物末端在另一個較長聚合物鏈的中間連接點處鍵結在
一起,從而形成穩定的連接,即使暴露於高於300◦C的加熱溫度後。先前已報
導在溴吸附原子存在下末端炔烴中C-H鍵的活化[8]。
In classical, i.e. solution-based chemistry, organic molecules (products) are synthesized in several steps from more simple, i.e. smaller, organic molecules, so-called precursors. Often, these reactions occur only in the presence of specific catalytic
substances. These reactions from the precursors to the product often involve steps like the removal of designed end groups by the catalyst and afterward, the bonding of another precursor to the thereby activated site.
A new approach to the chemical design is On-Surface Synthesis (OSS), i.e. the synthesis of molecules on surfaces, which act as the catalyst, without the presence of a solvent. Thereby, chemical reactions deviate from the results of solution-based chemistry. It has certain disadvantages but also advantages. In particular, and relevant here, the environment in OSS is well-defined and allows for the study of the processes during the reaction by the whole set of physical methods. Respectively, it is a field where Chemists (for the precursor design) and physicists work closely together.
The Dehalogenation reaction- the cleavage of C–X bonds (X stands for halogen)- in combination with a C-C coupling reaction is the first OSS routine that was experimentally realized in 2007 [1]. There, C was a member of a C6 ring (Ullmann-type coupling). This research propelled forward with the realization of Graphene Nanoribbons in 2010 [2]. It has attracted great attention as a flexible path to constructing covalently C–C bonds and nano architectures via on-surface synthesis [3]. Common techniques in this field are ultrahigh-vacuum low-temperature scanning tunneling microscopy (STM) [4][5] and atomic force microscopy (AFM) [6] [7].
In this thesis, we successfully activated the C–Br bonds in the terminal Bromomethyl groups of 3,10-Di(Bromomethyl)-[5]Phenacene on the catalytic Ag(111) surface at room temperature, i.e. the activation of Br from a C6-CH2-Br ligand (Wurtz-type coupling). Subsequently, we achieved the transition of organometallic structures into covalent products at 250◦C. Especially, the formation of long polymer chains between carbons of the terminal groups after overheating heating
to 300◦C.
More intriguingly, the successful activation of C–H bonds in Bromomethyl groups for the formation of branched structures in polymer chain-specifically,two or three polymer ends bonded together at the mid-connection point of another longer polymer chain-resulted in stable connections that persisted even after exposure to heating temperatures higher than 300◦C. The activation of C–H bonds in Terminal Alkynes in the presence of Bromine adatoms has been previously reported [8].
[1] Leonhard Grill, Matthew Dyer, Leif Lafferentz, Mats Persson, Maike Peters, and Stefan Hecht. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol., 2:687–91, 11 2007.
[2] Jinming Cai, Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun, Stephan Blankenburg, Matthias Muoth, Ari Seitsonen, Moussa Saleh, Xinliang Feng, Klaus M¨ ullen, and Roman Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466:470–3, 07 2010.
[3] Chi Zhang, Zewei Yi, and Wei Xu. Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials. Materials Futures, 1(3):032301, aug 2022.
[4] Johanna Eichhorn, Thomas Strunskus, Atena Rastgoo-Lahrood, Debabrata Samanta, Michael Schmittel, and Markus Lackinger. On-surface ullmann polymerization via intermediate organometallic networks on ag(111). Chem. Commun., 50:7680–7682, 2014.
[5] Wenzhao Zhang, Tao Wang, Dong Han, Jianming Huang, Lin Feng, Honghe Ding, Jun Hu, Zhiwen Zeng, Qian Xu, and Junfa Zhu. Stepwise synthesis of n–ag–n and c–ag–c organometallic structures on a ag(111) surface. J. Phys. Chem. C., 124(30):16415–16422, 2020.
[6] Harry M¨onig, Saeed Amirjalayer, Alexander Timmer, Zhixin Hu, Lacheng Liu, Oscar D´ ıaz Arado, Marvin Cnudde, Cristian Strassert, Wei Ji, Michael Rohlfing, and Fuchs Harald. Quantitative assessment of intermolecular in teractions by atomic force microscopy imaging using copper oxide tips. Nat. Nanotechnol., 13, 05 2018.
[7] S¨ oren Zint, Daniel Ebeling, Tobias Schl¨oder, Sebastian Ahles, Doreen Mollenhauer, Hermann Wegner, and Andre Schirmeisen. Imaging successive in termediate states of the on-surface ullmann reaction on cu(111): Role of the metal coordination. ACS nano, 11, 03 2017.
[8] Jing Liu, Qiwei Chen, Qilin He, Yajie Zhang, Xiangyu Fu, Yongfeng Wang, Dahui Zhao, Wei Chen, Guo Qin Xu, and Kai Wu. Bromine adatom promoted c–h bond activation in terminal alkynes at room temperature on ag(111). Phys. Chem. Chem. Phys., 20:11081–11088, 2018.
[9] Zi Wang, Lizhen Huang, and Lifeng Chi. Organic Semiconductor Field-effect
Transistors Based on Organic-2D Heterostructures. Frontiers in Materials,
7:295, October 2020.
[10] Xingguo Zhang, Zhihua Pu, Xiao Su, Chengcheng Li, Hao Zheng, and Dachao
Li. Flexible organic field-effect transistors-based biosensors: progress and
perspectives. Analytical and Bioanalytical Chemistry, 415, 04 2023.
[11] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto. 2d
materials and van der waals heterostructures. Sci., 353(6298):aac9439, 2016.
[12] Qian Shen, Hong-Ying Gao, and Harald Fuchs. Frontiers of on-surface syn
thesis: From principles to applications. Nano Today, 13:77–96, 2017.
[13] Wallace Ravven. Team aims to create graphene nanoribbon’wires’ capable of
carrying informationthousands of times faster. Phys Org., 2014.
[14] Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan,
Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia
Seng Chang, Germar Hoffmann, and Yukio Hasegawa. Scanning tunneling microscopy/spectroscopy of picene thin films formed on ag(111). J. Phys.
Chem., 141:114701, 09 2014.
[15] Yuma Shimo, Takahiro Mikami, Shino Hamao, Hidenori Goto, Hideki
Okamoto, Ritsuko Eguchi, Shin Gohda, Yasuhiko Hayashi, and Yoshihiro
Kubozono. Synthesis and transistor application of the extremely extended
phenacene molecule, [9]phenacene. Sci Rep., 6, 2016.
[16] Hideki Okamoto, Shino Hamao, Ritsuko Eguchi, Hidenori Goto, Yasuhiro
Takabayashi, Paul Yen, Luo Liang, Chia-Wei Chou, Germar Hoffmann, Shin
Gohda, Hisako Sugino, Yen-Fa Liao, Hirofumi Ishii, and Yoshihiro Kubo
zono. Synthesis of the extended phenacene molecules, [10]phenacene and
[11]phenacene, and their performance in a field-effect transistor. Sci Rep., 9,
03 2019.
[17] Xuexia He, Ritsuko Eguchi, Hidenori Goto, Eri Uesugi, Shino Hamao, Ya
suhiro Takabayashi, and Yoshihiro Kubozono. Fabrication of single crystal
field-effect transistors with phenacene-type molecules and their excellent tran
sistor characteristics. Org. Electron., 14:1673–1682, 06 2013.
[18] Abiodun Olagoke Adeniji, Omobola Oluranti Okoh, and Anthony Ifeanyi Okoh. Analytical methods for polycyclic aromatic hydrocarbons and their global trend of distribution in water and sediment: A review. In Mansoor Zoveidavianpoor, editor, Recent Insights in Petroleum Science and Engineering, chapter 19. IntechOpen, Rijeka, 2017.
[19] Hussein I. Abdel-Shafy and Mona S.M. Mansour. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1):107–123, 2016.
[20] Pau Peng and Lee Lim. Polycyclic aromatic hydrocarbons (pahs) sample preparation and analysis in beverages: A review. Food Analytical Methods, 15, 04 2022.
[21] Serban C. Moldoveanu. Chapter 2- pyrolysis of hydrocarbons. In Serban C. Moldoveanu, editor, Pyrolysis of Organic Molecules (Second Edition), pages 35–161. Elsevier, second edition edition, 2019.
[22] Jian Yan, Lei Wang, Peter P Fu, and Hongtao Yu. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the us epa priority pollutant list. Mutat Res., 557(1):99–108, 2004.
[23] Hussein Abdel-Shafy and Mona Mansour. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol, 25:107–123, 01 2015.
[24] Reizer Edina and B´ ela Fiser. Potential reaction initiation points of polycyclic aromatic hydrocarbons. Arabian Journal of Chemistry, 15:103839, 03 2022.
[25] Bing Yan, Changxia Shi, Gregg Beckham, Eugene Chen, and Yuriy Roman Leshkov. Breaking c–c bonds via electrochemically mediated hydrogen atom transfer reactions. ChemRxiv., 05 2021.
[26] Simona Achilli, Francesco Tumino, Andi Rabia, Alessio Orbelli Biroli, Andrea Li Bassi, Alberto Bossi, Nicola Manini, Giovanni Onida, Guido Fratesi, and Carlo Spartaco Casari. Steric hindrance in the on-surface synthesis of diethynyl-linked anthracene polymers. Phys. Chem. Chem. Phys., 24:1361613624, 2022.
[27] Qitang Fan, J. Michael Gottfried, and Junfa Zhu. Cheminform abstract: Surface-catalyzed c-c covalent coupling strategies toward the synthesis of low dimensional carbon-based nanostructures. Acc. Chem. Res., 48, 07 2015.
[28] Ke Shi, Xin Zhang, Chen Shu, Li Deng-Yuan, Xin-Yan Wu, and Pei Liu. Ullmann coupling reaction of aryl chlorides on au(111) using dosed cu as catalyst and the programmed growth of 2d covalent organic frameworks. Chem. Commun., 52, 06 2016.
[29] Kai Wu, Jingxin Dai, Wenhui Zhao, Lingbo Xing, Jian Shang, Huanxin Ju, Xiong Zhou, Jing Liu, Qiwei Chen, Yongfeng Wang, and Junfa Zhu. Dechlorinated ullmann coupling reaction of aryl chlorides on ag(111): A combined stm and xps study. ChemPhysChem, 20, 06 2019.
[30] Chul-Ho Jun. Transition metal-catalyzed carbon–carbon bond activation. Chem. Soc. Rev., 33:610–618, 2004.
[31] Paramasivam Sivaguru, Zikun Wang, Giuseppe Zanoni, and Xihe Bi. Cleavage of carbon–carbon bonds by radical reactions. Chem. Soc. Rev., 48:2615–2656,
2019.
[32] Qiang Sun, Liangliang Cai, Yuanqi Ding, Honghong Ma, Chunxue Yuan, and Wei Xu. Single-molecule insight into wurtz reaction on metal surfaces. Phys.
Chem. Chem. Phys., 18, 01 2015.
[33] F. Ullmann and Jean Bielecki. Ueber synthesen in der biphenylreihe. Berichteder deutschen chemischen Gesellschaft, 34:2174– 2185, 01 2006.
[34] Chris Judd, Sarah Haddow, Neil Champness, and Alex Saywell. Ullmann coupling reactions on ag(111) and ag(110); substrate influence on the formation of covalently coupled products and intermediate metal-organic structures. Sci Rep., 7, 11 2017.
[35] Weihua Wang, Xingqiang Shi, Shiyong Wang, Michel Hove, and Nian Lin. Single-molecule resolution of an organometallic intermediate in a surface supported ullmann coupling reaction. J. Am. Chem. Soc., 133:13264–7, 08 2011.
[36] Rafal Zuzak, Andrej Jancarik, Andre Gourdon, Marek Szymonski, and Szymon Godlewski. On-surface synthesis with atomic hydrogen. ACS nano, 14, 09 2020.
[37] Qitang Fan, Junfa Zhu, and J. Michael Gottfried. Organometallic Structures and Intermediates in Surface Ullmann Coupling. 01 2017.
[38] Qitang Fan, Cici Wang, Yong Han, Junfa Zhu, Julian Kuttner, Gerhard Hilt, and J. Michael Gottfried. Surface-assisted formation, assembly, and dynamics of planar organometallic macrocycles and zigzag shaped polymer chains with c-cu-c bonds. ACS nano, 8, 12 2013.
[39] Ke Shi, Ding Yuan, Cheng Wang, Chen Shu, Li Deng-Yuan, Ziliang Shi, Xin Yan Wu, and Pei Liu. Ullmann reaction of aryl chlorides on various surfaces and the application in stepwise growth of 2d covalent organic frameworks. Organic letters, 18, 03 2016.
[40] Mahdavi Anari Forou and J.L. Reynolds. The wurtz cross-coupling reaction revisited. Main Group Metal Chemistry, 17(6):399–402, 1994.
[41] Akash Gupta. On-surface polymerization. Master’s thesis, National Tsing Hua University, September 2021.
[42] Maryam Abyazisani, Jennifer Macleod, and Josh Lipton-Duffin. Cleaning up after the party: Removing the byproducts of on-surface ullmann coupling. ACS Nano, 13, 07 2019.
[43] Nan Cao, Biao Yang, Alexander Riss, Johanna Ros´ en, Jonas Bj¨ ork, and Johannes Barth. On-surface synthesis of enetriynes. Nat. Comm., 14:1255, 03 2023.
[44] Yu-Ran Luo. Comprehensive Handbook of Chemical Bond Energies. 03 2007.
[45] Osamu Endo, Masashi Nakamura, Kenta Amemiya, and Hiroyuki Ozaki. Thermal dehydrogenation of n-alkane on au(111) and pt(111) surface. Surf. Sci., 681, 11 2018.
[46] Brent Speetzen and Steven R. Kass. Ferrocene acidity and c–h bond dissociation energy via experiment and theory. J. Phys. Chem. A, 123(28):6016–6021, 2019. PMID: 31268713.
[47] G. Binnig and H. Rohrer. Scanning tunneling microscopy. Surf. Sci.,126(1):236–244, 1983.
[48] Julian Chen. Introduction to Scanning Tunneling Microscopy: Second Edition, volume 62. 06 1994.
[49] Sun Chi. Scanning Tunneling Microscopy Study of Superconducting Pairing Symmetry: Application to LiFeAs. PhD thesis, The University of British Columbia, 2014.
[50] Allectra GmbH, Allectra-7-optics.pdf.
[51] M. Balcon, Francesco Marinello, Enrico Savio, and Simone Carmignato. Thermal drift study on spms. volume 1, pages 209–212, 01 2010.
[52] Kim Henriksen and Susan Stipp. Image distortion in scanning probe microscopy. Am. Min., 87:5–16, 01 2002.
[53] Philipp Rahe, Ralf Bechstein, and Angelika K¨ uhnle. Vertical and lateral drift corrections of scanning probe microscopy images. J. Vac. Sci. Technol. B, 28,2010.
[54] Yuliang Wang, Huimin Wang, and Shusheng Bi. Real time drift measurement for colloidal probe atomic force microscope: A visual sensing approach. AIP Advances, 4:057130, 05 2014.
[55] Michael Snella. Drift Correction for Scanning-Electron Microscopy. PhD thesis, 05 2011.
[56] Naresh Marturi, Sounkalo Demb´el´e, and Nadine Piat. Fast image drift compensation in scanning electron microscope using image registration. 08 2013.
[57] Brent Mantooth, Z. Donhauser, Kevin Kelly, and Paul Weiss. Cross correlation image tracking for drift correction and adsorbate analysis. Rev. Sci. Instrum., 73:313–317, 02 2002.
[58] Mitchell Yothers, Aaron Browder, and Lloyd Bumm. Real-space post processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images. Rev. Sci. Instrum., 88, 10 2016.
[59] Brian Salmons, Daniel Katz, and Matthew Trawick. Correction of distortion due to thermal drift in scanning probe microscopy. Ultramicroscopy, 110:339 49, 03 2010.
[60] Michael Philpott and Yoshiyuki Kawazoe. Magnetism and structure of graphene nanodots with interiors modified by boron, nitrogen, and charge. J.Phys. Chem., 137:054715, 08 2012.
[61] Ryan Fortenberry, Carlie Novak, Timothy Lee, Partha Bera, and Julia Rice. Identifying molecular structural aromaticity for hydrocarbon classification. ACS Omega, 3:16035–16039, 11 2018.
[62] Peter G. Jones and Piotr Ku´s. Secondary interactions in bromomethyl-substituted benzenes: Crystal structures of three α,α′-bis-bromoxylenes, 1,2,3,5-tetrakis(bromomethyl)benzene, and 1,2,4,5 tetrakis(bromomethyl)benzene. Zeitschrift f¨ ur Naturforschung B, 62(5):725-731, 2007.
[63] R. Kominar, Michael Krech, and Stanley Price. Pyrolysis of bromobenzene by the toluene carrier technique and determination of d(c6h5—br). Can. J.Chem., 56:1589–1592, 02 2011.
[64] Rico Gutzler, Hermann Walch, Georg Eder, Stephan Kloft, Wolfgang Heckl, and Markus Lackinger. Surface mediated synthesis of 2d covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), cu(111), and ag(110). Chem. Commun (Camb)., 29:4456–8, 09 2009.
[65] Vijay Kanuru, Georgios Kyriakou, Simon Beaumont, Anthoula Papageorgiou, David Watson, and Richard Lambert. Sonogashira coupling on an extended gold surface in vacuo: Reaction of phenylacetylene with iodobenzene on au(111). J. Am. Chem. Soc., 132:8081–6, 06 2010.
[66] Simon Kelly, Dan Sorescu, Jun Wang, Kaye Archer, Kenneth Jordan, and Peter Maksymovych. Structural and electronic properties of ultrathin picene films on the ag(100) surface. Surf. Sci., 652, 02 2016.
[67] Tobias Huempfner, Martin Hafermann, Christian Udhardt, Felix Otto, Roman Forker, and Torsten Fritz. Insight into the unit cell: Structure of picene thin films on ag(100) revealed with complementary methods. J. Phys. Chem.,145:174706, 11 2016.
[68] Song-Wen Chen, I-Chen Sang, Hideki Okamoto, and Germar Hoffmann. Adsorption of phenacenes on a metallic substrate– revisited. J. Phys. Chem. C., 121, 05 2017.
[69] M Yano, M Endo, Yuri Hasegawa, R Okada, Yoichi Yamada, and Masahiro Sasaki. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures. J. Phys. Chem., 141:034708, 07 2014.
[70] Xiji Shao, Xuhang Ma, Mingjing Liu, Tao Zhang, Yaping Ma, Chaoqiang Xu, Xuefeng Wu, Tao Lin, and Kedong Wang. Comparing study of picene thin films on snse and au(11 1) surfaces. Chem. Phys., 532:110689, 2020.
[71] Masahiro Yano, Ryosuke Okada, Megumi Endo, Ryosuke Shimizu, Yuri Hasegawa, Yoichi Yamada, and Masahiro Sasaki. Microscopic structure of k-doped organic monolayers. e-J. Surf. Sci. Nanotech., 12:330–333, 07 2014.
[72] Chunyang Zhang, Hiromu Tsuboi, Yuri Hasegawa, Masato Iwasawa, Masahiro Sasaki, Yutaka Wakayama, Hiroyuki Ishii, and Yoichi Yamada. Fabrication of highly oriented multilayer films of picene and dntt on their bulklike monolayer. ACS Omega, 4:8669–8673, 05 2019.
[73] Takuya Hosokai, Alexander Hinderhofer, Fabio Bussolotti, Keiichirou Yonezawa, Christopher Lorch, Alexei Vorobiev, Yuri Hasegawa, Yoichi Yamada, Yoshihiro Kubozono, Alexander Gerlach, Satoshi Kera, Frank Schreiber, and Nobuo Ueno. Thickness and substrate dependent thin film growth of picene and impact on the electronic structure. J. Phys. Chem. C., 119, 12 2015.
[74] Hideki Okamoto, Shino Hamao, Hidenori Goto, Yusuke Sakai, Masanari Izumi, Shin Gohda, Yoshihiro Kubozono, and Ritsuko Eguchi. Transistor application of alkyl-substituted picene. Sci Rep., 4:5048, 05 2014.
[75] P. Redhead. Hydrogen in vacuum systems: An overview. 671:243–254, 07 2003.
[76] Federico Rosei, M Schunack, Pengkun Jiang, Andre Gourdon, Erik Lægsgaard, I Stensgaard, C Joachim, and Flemming Besenbacher. Organic molecules acting as templates on metal surfaces. Science, 296:328–31, 05 2002.
[77] Aleksandr Seliverstov, Dmitry Muzychenko, Alexander Volodin, Ewald Janssens, and Chris Haesendonck. Atomic structure and peculiarities of the electronic properties of br layers on ag(111) at different coverages. Surf. Sci., 734:122304, 04 2023.
[78] B. Andryushechkin, V. Cherkez, B. Kierren, Y. Fagot-Revurat, D. Malterre, and Konstantin Eltsov. Commensurate-incommensurate phase transition in chlorine monolayer chemisorbed on ag(111): Direct observation of crowdion condensation into a domain-wall fluid. Phys. Rev. B, 84, 11 2011.
[79] Tomas Carpy. A scanning tunnelling microscopy and spectroscopic study of bromine functionalised molecules on metal surfaces. PhD thesis, 2015.
[80] lu jc, Zilin Ruan, Yurou Guan, Deliang Bao, Xiao Lin, Zhenliang Hao, Hui Zhang, Lingling Song, Cuixia Yan, Jinming Cai, Shixuan Du, and Hong-Jun Gao. Controllable density of atomic bromine in a two-dimensional hydrogen bond network. J. Phys. Chem. C., 122, 10 2018.
[81] Qing Li, Biao Yang, Haiping Lin, Nabi Aghdassi, Kangjian Miao, Junjie Zhang, Haiming Zhang, Youyong Li, Steffen Duhm, Jian Fan, and Lifeng Chi. Surface-controlled mono/diselective ortho c–h bond activation. J. Am. Chem. Soc., 138(8):2809–2814, 2016. PMID: 26853936.