研究生: |
楊昇樺 Yang, Sheng-Hua |
---|---|
論文名稱: |
有繞行次數限制的光學線性壓縮器及光學線性解壓縮器之建造方式 Constructions of Optical Linear Compressors and Optical Linear Decompressors With a Limited Number of Recirculations |
指導教授: |
鄭傑
Cheng, Jay |
口試委員: |
馮輝文
Ferng, Huei-Wen 張正尚 Chang, Cheng-Shang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 整數表示法 、線性壓縮器 、線性解壓縮器 、最大可表示整數 、光學暫存器 、光佇列 、封包交換 、路徑選擇 |
外文關鍵詞: | integer representation, linear compressors, linear decompressors, maximum representable integer, optical buffer, optical queue, packet switchimg, routing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全光封包交換網路的主要問題裡,其中之一便是並沒有光封包的暫存器的存在,為了達到暫存封包的目的,目前已知可行的一種方法是利用光交換機將光封包導引進光纖延遲線中,等到適當的時機再將它釋放到適當的地點,以模擬暫存器的效果。在這篇論文裡,我們考慮以光交換機及光纖延遲線建造成的具有繞行次數限制之光佇列。會有這樣的問題產生其實是來自實作上可行性的考量。我們證明了光學線性壓縮器和光學線性解壓縮器(兩種特別的光佇列)的建造問題在簡單的繞行方案及有繞行次數的限制下可以被等價地轉換成一個有相對應限制條件的整數表示問題。具體來說,光學線性壓縮器/解壓縮器的有效最大延遲量等於最大可表示整數B(d_1^M;k)(定義於第一章(1.4)式),其中d_1^M=(d_1, d_2,..., d_M)為在我們的架構中M條光纖延遲線的延遲量形成之序列,而k為一個封包的最大繞行次數。
給定M與k後,找出最佳建造方式以達到線性壓縮器/解壓縮器最大延遲量的問題等價於在A_M中找出最佳序列使得其對應的最大可表示整數達到最大值,其中A_M是所有被允許構造成線性壓縮器/解壓縮器的光纖延遲線延遲量序列的集合。在這篇論文當中,我們考慮在論文[16]提出的雙輸入埠與單輸出埠之先進先出多工器貪婪建造方式,並且推廣到線性壓縮器/解壓縮器的貪婪建造方式。我們證明每個最佳的建造方式必定是一個貪婪建造方式。
給定M與k後,找出最佳建造方式以達到線性壓縮器/解壓縮器最大延遲量的問題等價於在A_M中找出最佳序列使得其對應的最大可表示整數達到最大值,其中A_M是所有被允許構造成線性壓縮器/解壓縮器的光纖延遲線延遲量序列的集合。在這篇論文當中,我們考慮在論文[16]提出的雙輸入埠與單輸出埠之先進先出多工器貪婪建造方式,並且推廣到線性壓縮器/解壓縮器的貪婪建造方式。我們證明每個最佳的建造方式必定是一個貪婪建造方式。
One of the main problems in all-optical packet-switched networks is the lack of optical buffers, and one feasible technology for the constructions of optical buffers is to use optical crossbar Switches and fiber Delay Lines (SDL). In this thesis, we consider SDL constructions of optical queues with a limited number of recirculations through the optical switches and the fiber delay lines. Such a problem arises from practical feasibility considerations. We show that the constructions of optical linear compressors and optical linear decompressors (special types of optical queues) under a simple packet routing scheme and under the constraint of a limited number of recirculations can be transformed into equivalent integer representation problems under a corresponding constraint. Specifically, we show that the effective maximum delay of a linear compressor/decompressor in our constructions is equal to the maximum representable integer B(d_1^M;k) with respect to d_1^M and k (defined in (1.4) in Chapter 1), where d_1^M=(d_1, d_2,..., d_M) is the sequence of the delays of the M fibers used in our
constructions and k is the maximum number of times that a packet can be routed through the M fibers.
Given M and k, therefore, the problem of finding an optimal construction, in the sense of maximizing the maximum delay, among our constructions of linear compressors/decompressors is equivalent to the problem of finding an optimal sequence in A_M, where A_M is the set of all sequences of fiber delays allowed in our constructions
of linear compressors/decompressors. In this thesis, we consider the class of greedy constructions of 2-to-1 FIFO multiplexers proposed in [16], and extend this class of greedy constructions for the constructions of linear compressors/decompressors. We show that every optimal construction must be a greedy construction.
[1] P. R. Prucnal, M. A. Santoro, and S. K. Sehgal, “Ultrafast all-optical synchronousmultiple access fiber networks” IEEE Journal on Selected Areas in Communications, vol. 4, pp. 1484–1493, December 1986.
[2] M. J. Karol, “Shared-memory optical packet (ATM) switch,” in Proceedings SPIE: Multigigabit Fiber Communication Systems (1993), vol. 2024, pp. 212–222, October 1993.
[3] Z. Hass, “The “staggering switch”: An electronically controlled optical packet switch,” IEEE Journal of Lightwave Technology, vol. 11, pp. 925–936, May/June 1993.
[4] I. Chlamtac and A. Fumagalli, “Quadro-star: A high performance optical WDM star network,” IEEE Transactions on Communications, vol. 42, pp. 2582–2591, August 1994.
[5] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson, P. Poggiolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong, R. T. Hofmeister, C.-L. Lu, A. Mekkittikul, D. J. M. Sabido IX, C.-J. Suh, and E. W. M. Wong, “Cord: contention resolution by delay lines,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1014–1029, June 1996.
[6] R. L. Cruz and J.-T. Tsai, “COD: alternative architectures for high speed packet switching, IEEE/ACM Transactions on Networking, vol. 4, pp. 11–21, February 1996.
[7] D. K. Hunter, D. Cotter, R. B. Ahmad, D. Cornwell, T. H. Gilfedder, P. J. Legg, and I. Andonovic, “2 × 2 buffered switch fabrics for traffic routing, merging and shaping in photonic cell networks,” IEEE Journal of Lightwave Technology, vol. 15, pp. 86–101, January 1997.
[8] D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic, “SLOB: a switch with large optical buffers for packet switching,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1725–1736, October 1998.
[9] E. Varvarigos, “The “packing” and the “scheduling packet” switch architectures for almost all-optical lossless networks,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1757–1767, October 1998.
[10] I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Multibuffer delay line architectures for efficient contention resolution in optical switching nodes,” IEEE Transactions on Communications, vol. 48, pp. 2089–2098, December 2000.
[11] Y.-T. Chen, C.-S. Chang, J. Cheng, and D.-S. Lee, “Feedforward SDL constructions of output-buffered multiplexers and switches with variable length bursts,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07), Anchorage, AK, USA, May 6–12, 2007.
[12] I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Optimal 2 × 1 multi-stage optical packet multiplexer,” in Proceedings IEEE Global Telecommunications Conference (GLOBECOM’97), Phoenix, AZ, USA, November 3–8, 1997, pp. 566–570.
[13] C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary and sufficient condition for the construction of 2-to-1 optical FIFO multiplexers by a single crossbar switch and fiber delay lines,” IEEE Transactions on Information Theory, vol. 52, pp. 4519–4531, October 2006.
[14] J. Cheng, “Constructions of fault tolerant optical 2-to-1 FIFO multiplexers,” IEEE Transactions on Information Theory, vol. 53, pp. 4092–4105, November 2007.
[15] J. Cheng, “Constructions of optical 2-to-1 FIFO multiplexers with a limited number of recirculations,” IEEE Transactions on Information Theory, vol. 54, pp. 4040–4052, September 2008.
[16] J. Cheng, C.-S. Chang, T.-H. Chao, D.-S. Lee, and C.-M. Lien, “On constructions of optical queues with a limited number of recirculations,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’08), Phoenix, AZ, USA, April 13–18, 2008.
[17] X. Wang, X. Jiang, and S. Horiguchi, “Improved bounds on the feedfoward design of optical multiplexers,” in Proceedings International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN’08), Sydney, Australia, May 7–9, 2008, pp. 178–183.
[18] S.-Y. R. Li and X. J. Tan, “Fiber memory,” in Proceedings Annual Allerton Conference on Communication, Control, and Computing (Allerton’06), Monticello, IL, USA, September 27–29, 2006. Full version of this paper is submitted to IEEE Transactions on Information Theory.
[19] C.-S. Chang, Y.-T. Chen, and D.-S. Lee, “Constructions of optical FIFO queues,” IEEE Transactions on Information Theory, vol. 52, pp. 2838–2843, June 2006.
[20] B. A. Small, A. Shacham, and K. Bergman, “A modular, scalable, extensible, and transparent optical packet buffer,” Journal of Lightwave Technology, vol. 25, pp. 978–985, April 2007.
[21] P.-K. Huang, C.-S. Chang, J. Cheng, and D.-S. Lee, “Recursive constructions of parallel FIFO and LIFO queues with switched delay lines,” IEEE Transactions on Information Theory, vol. 53, pp. 1778–1798, May 2007.
[22] N. Beheshti and Y. Ganjali, “Packet scheduling in optical FIFO buffers,” in Proceedings IEEE High-Speed Networks Workshop (HSN’07), Anchorage, AK, USA, May 11, 2007.
[23] X.Wang, X. Jiang, and S. Horiguchi, “A construction of shared optical buffer queue with switched delay lines,” in Proceedings IEEE International Conference on High Performance Switching and Routing (HPSR’08), Shanghai, China, May 15–17, 2008, pp. 86–91.
[24] A. D. Sarwate and V. Anantharam, “Exact emulation of a priority queue with a switch and delay lines,” Queueing Systems: Theory and Applications, vol. 53, pp. 115–125, July 2006.
[25] H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee, “A simple proof for the constructions of optical priority queues,” Queueing Systems: Theory and Applications, vol. 56, pp. 73–77, June 2007
[26] H. Kogan and I. Keslassy, “Optimal-complexity optical router,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07 Minisymposium), Anchorage, AK, USA, May 6–12, 2007.
[27] H. Rastegarfar, M. Ghobadi, and Y. Ganjali, “Emulation of Optical PIFO Buffers,”in Proceedings IEEE Global Communications Conference (GLOBECOM’09), Honolulu, HI, USA, November 30–December 4, 2009.
[28] F. Jordan, D. Lee, K. Y. Lee, and S. V. Ramanan, “Serial array time slot interchangers and optical implementations,” IEEE Transactions on Computers, vol. 43, pp. 1309–1318, 1994.
[29] Y.-T. Chen, J. Cheng, and D.-S. Lee, “Constructions of linear compressors, nonovertaking delay lines, and flexible delay lines for optical packet switching,” IEEE/ACM Transactions on Networking, vol. 17, pp. 2014–2027, December 2009. Conference version appeared in IEEE INFOCOM 2006.
[30] C.-S. Chang, J. Cheng, T.-H. Chao, and D.-S. Lee, “Optimal constructions of fault tolerant optical linear compressors and linear decompressors,” IEEE Transactions on Communications, vol. 57, pp. 1140–1150, April 2009. Conference version appeared in IEEE INFOCOM 2007.
[31] H. Kogan and I. Keslassy, “Fundamental complexity of optical systems,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07 Minisymposium), Anchorage, AK, USA, May 6–12, 2007.
[32] J. Liu, T. T. Lee, X. Jiang, and S. Horiguchi, “Blocking and delay analysis of single wavelength optical buffer with general packet size distribution,” IEEE Journal of Lightwave Technology, vol. 27, pp. 955–966, April 2009.
[33] D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet switches,”IEEE Journal of Lightwave Technology, vol. 16, pp. 2081–2094, December 1998.
[34] S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Communications Magazine, vol. 38, pp. 84–94, February 2000.
[35] D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet switching,”IEEE Communications Magazine, vol. 38, pp. 116–122, September 2000.
[36] S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A unified study of contentionresolution schemes in optical packet-switched networks,” Journal of Lightwave Technology, vol. 21, pp. 672–683, March 2003.
[37] S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” Journal of Lightwave Technology, vol. 24, pp. 4468–4492, December 2006.
[38] K. Mikl´os, “Congestion resolution and buffering in packet switched all-optical networks,”Ph.D. Dissertation, Budapest University of Techonology and Economics, Budapest, Hungary, 2008.
[39] E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photonics Technology Letters, vol. 18, pp. 103–105, January 2006.
[40] C. P. Larsen and M. Gustavsson, “Linear crosstalk in 4 × 4 semiconductor optical amplifier gate switch matrix,” IEEE Journal of Lightwave Technology, vol. 15, pp. 1865–1870, October 1997.
[41] R. Geldenhuys, Z. Wang, N. Chi, I. Tafur Monroy, A. M. J. Koonen, H. J. S. Dorren, F. W. Leuschner, G. D. Khoe, and S. Yu, “Multiple recirculations through Crosspoint switch fabric for recirculating optical buffering,” Electronics Letters, vol. 41, pp. 1136–1137, September 2005.