研究生: |
巫志鴻 Wu, Chih-Hung |
---|---|
論文名稱: |
啟動子-核糖體結合位庫的建立與基因電路規格設計上的應用 Construction of Promoter-RBS Libraries and Its Application to Gene Circuit Design with Design Specifications |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
黃宣誠
張翔 鄭桂忠 莊永仁 藍忠昱 莊哲男 林俊良 陳博現 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 合成生物學 、基因電路 、H2/H∞參考追蹤設計 |
外文關鍵詞: | synthetic biology, genetic circuit, H2/H∞ reference tracking design |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
合成生物學的主要目的,在於設計一個具備特定功能的合成基因電路。在設計之初先提出其設計規格,再將此基因電路加以實現,免除一系列複雜的實驗。然而,到目前為止,要達到此目標還有很長的一段路要走。其最主要的原因,在於缺乏一些具有良好特性化的生物元件及設計的方法,使得合成生物學家無法彷照電機、機械工程師的設計步驟來加以設計合成基因電路。於是,為了奠定基因電路設計的基礎,我們便藉由系統鑑別的技術來將生物元件特性化。於是,要如何建立一個合成基因電路上可以使用的生物元件庫便是一個很重要的課題。
啟動子和核糖體結合位分別影響了基因轉錄及轉譯的效率,然而由於轉錄效率相對於轉譯效率而言十分快速,使我們不易建立其各別獨立的分子生物庫。於是,我們將這兩個生物元件考慮成一個整合的元件,再藉由系統鑑別系統的技術來鑑別出啟動子-核糖體結合位元件的強度,再以強度建立一個有用的啟動子-核糖體結合位庫。而此啟動子-核糖體結合位庫的建立,將可協助我們免除不斷試誤的過程便設計出所需求的合成基因電路。一般而言,我們必須建立三種啟動子-核糖體結合位庫,即連續表現型、抑制子調控型及促進子調控型。我們提供了這三種啟動子-核糖體結合位庫的建立方式,並提供一個系統化的方法來協助我們選擇適合的啟動子-核糖體結合位元件,使得選擇出來的元件能夠使基因電路具備我們欲求之行為。基於本論文提出的啟動子-核糖體結合位庫的建立方式及系統化的設計方法,經設計者提出幾個設計的規格後,便可使用本論文所提出的系統化設計方法,利用已建立好的啟動子-核糖體結合位庫,將設計基因電路的工作變成容易,而使用者不再需要試誤的實驗過程。基於啟動子-核糖體結合位庫的建立及系統化的設計方法的提出,在未來,合成生物學家便可將設計基因電路的心力直接放在以應用導向的基因電路上,以大幅縮短基因電路的設計周期,使得以工程方法設計基因電路的目的得以實現。
A major goal of synthetic biology is to engineer synthetic gene circuits with desired behaviors. Up to now, however, it still requires extensive and iterative work. The main obstacle is the lack of some well-characterized biological parts and design methods. By the identification technique, the biological parts can be well-characterized to build a useful library for engineering a novel gene circuit. Hence how to build a useful library of biological parts for engineering synthetic gene circuit in vitro and in silico is an important topic from the viewpoint of synthetic biology.
Promoters and RBSs are regarded as a lumped component in this study so that the promoter-RBS component can help us construct useful promoter-RBS libraries by the identification technique. The promoter-RBS libraries can be easily used to engineer a synthetic gene circuit before laborious process of trial-and-error. In general, there exist 3 kinds of promoter-RBS components in synthetic biology, hence 3 kinds of promoter-RBS libraries are constructed in this study, i.e., constitutive, repressor-regulated and activator-regulated promoter-RBS libraries.We provide the construction procedure for the constitutive, repressor-regulated, and activator-regulated promoter-RBS libraries. After building 9 promoter-RBS libraries, we provide the characteristic indexes of these libraries through their mathematical models, a systematic method is proposed to help us select the adequate promoter-RBS component set. Finally, we provide a library-based search method to help us quickly select the most adequate promoter-RBS component set from promoter-RBS libraries. The proposed library-based search method can reduce the number of trial-and-error experiments in selecting an adequate promoter-RBS component set for a synthetic gene circuit, and then a gene circuit can be predictably implemented by a systematic design method before trial-and-error experiments.
[1] E. Andrianantoandro, S. Basu, D. K. Karig et al., “Synthetic biology: new engineering rules for an emerging discipline,” Molecular Systems Biology, vol. 2, no. 2006.0028, pp. 1-14, 2006.
[2] M. C. Chang, and J. D. Keasling, “Production of isoprenoid pharmaceuticals by engineered microbes,” Nature chemical biology, vol. 2, no. 12, pp. 674-81, Dec, 2006.
[3] J. W. Chin, “Programming and engineering biological networks,” Current Opinion in Structural Biology, vol. 16, no. 4, pp. 551-6, Aug, 2006.
[4] E. L. Haseltine, and F. H. Arnold, “Synthetic gene circuits: design with directed evolution,” Annual review of biophysics and biomolecular structure, vol. 36, pp. 1-19, 2007.
[5] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature, vol. 403, no. 6767, pp. 339-42, Jan 20, 2000.
[6] B. P. Kramer, A. U. Viretta, M. Daoud-El-Baba et al., “An engineered epigenetic transgene switch in mammalian cells,” Nat Biotechnol, vol. 22, no. 7, pp. 867-70, Jul, 2004.
[7] S. Basu, R. Mehreja, S. Thiberge et al., “Spatiotemporal control of gene expression with pulse-generating networks,” Proc Natl Acad Sci U S A, vol. 101, no. 17, pp. 6355-60, Apr 27, 2004.
[8] A. E. Friedland, T. K. Lu, X. Wang et al., “Synthetic gene circuits that count,” Science, vol. 324, no. 5931, pp. 1199-202, May 29, 2009.
[9] M. R. Atkinson, M. A. Savageau, J. T. Myers et al., “Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli,” Cell, vol. 113, no. 5, pp. 597-607, May 30, 2003.
[10] K. I. Goh, B. Kahng, and K. H. Cho, “Sustained oscillations in extended genetic oscillatory systems,” Biophys J, vol. 94, no. 11, pp. 4270-6, Jun, 2008.
[11] J. Stricker, S. Cookson, M. R. Bennett et al., “A fast, robust and tunable synthetic gene oscillator,” Nature, vol. 456, no. 7221, pp. 516-9, Nov 27, 2008.
[12] M. Tigges, T. T. Marquez-Lago, J. Stelling et al., “A tunable synthetic mammalian oscillator,” Nature, vol. 457, no. 7227, pp. 309-12, Jan 15, 2009.
[13] K. Rinaudo, L. Bleris, R. Maddamsetti et al., “A universal RNAi-based logic evaluator that operates in mammalian cells,” Nat Biotechnol, vol. 25, no. 7, pp. 795-801, Jul, 2007.
[14] M. N. Win, and C. D. Smolke, “Higher-order cellular information processing with synthetic RNA devices,” Science, vol. 322, no. 5900, pp. 456-60, Oct 17, 2008.
[15] H. Kobayashi, M. Kaern, M. Araki et al., “Programmable cells: interfacing natural and engineered gene circuits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8414-9, Jun 1, 2004.
[16] M. N. Win, and C. D. Smolke, “A modular and extensible RNA-based gene-regulatory platform for engineering cellular function,” Proc Natl Acad Sci U S A, vol. 104, no. 36, pp. 14283-8, Sep 4, 2007.
[17] E. Andrianantoandro, S. Basu, D. K. Karig et al., “Synthetic biology: new engineering rules for an emerging discipline,” Molecular Systems Biology, vol. 2, pp. 2006 0028, 2006.
[18] J. Hasty, D. McMillen, and J. J. Collins, “Engineered gene circuits,” Nature, vol. 420, no. 6912, pp. 224-30, Nov 14, 2002.
[19] D. Sprinzak, and M. B. Elowitz, “Reconstruction of genetic circuits,” Nature, vol. 438, no. 7067, pp. 443-8, Nov 24, 2005.
[20] M. L. Simpson, “Cell-free synthetic biology: a bottom-up approach to discovery by design,” Molecular Systems Biology, vol. 2, pp. 69, 2006.
[21] N. J. Guido, X. Wang, D. Adalsteinsson et al., “A bottom-up approach to gene regulation,” Nature, vol. 439, no. 7078, pp. 856-60, Feb 16, 2006.
[22] A. P. Arkin, and D. A. Fletcher, “Fast, cheap and somewhat in control,” Genome biology, vol. 7, no. 8, pp. 114, 2006.
[23] Y. Yokobayashi, R. Weiss, and F. H. Arnold, “Directed evolution of a genetic circuit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16587-91, Dec 24, 2002.
[24] A. C. Hawkins, F. H. Arnold, R. Stuermer et al., “Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone,” Applied and environmental microbiology, vol. 73, no. 18, pp. 5775-81, Sep, 2007.
[25] M. J. Dougherty, and F. H. Arnold, “Directed evolution: new parts and optimized function,” Current Opinion in Biotechnology, vol. 20, no. 4, pp. 486-91, Aug, 2009.
[26] W. W. Gibbs, “Synthetic life,” Scientific American, vol. 290, no. 5, pp. 74-81, May, 2004.
[27] B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature biotechnology, vol. 26, no. 7, pp. 787-794, 2008.
[28] T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided construction of synthetic gene circuits with predicted functions,” Nat Biotechnol, vol. 27, no. 5, pp. 465-71, May, 2009.
[29] B. S. Chen, and C. H. Wu, “A systematic design method for robust synthetic biology to satisfy design specifications,” BMC Systems Biology, vol. 3, pp. 66, 2009.
[30] B. S. Chen, C. H. Chang, and H. C. Lee, “Robust synthetic biology design: stochastic game theory approach,” Bioinformatics, vol. 25, no. 14, pp. 1822-30, Jul 15, 2009.
[31] B. S. Chen, and C. H. Wu, “Robust Optimal Reference-Tracking Design Method for Stochastic Synthetic Biology Systems: T-S Fuzzy Approach,” Fuzzy Systems, IEEE Transactions on, vol. 18, no. 6, pp. 1144-1159, 2010.
[32] C. H. Wu, W. Zhang, and B. S. Chen, “Multiobjective H(2)/H(infinity) synthetic gene circuit design based on promoter libraries,” Mathematical Biosciences, vol. 233, no. 2, pp. 111-25, Oct, 2011.
[33] C. H. Wu, H. C. Lee, and B. S. Chen, “Robust synthetic gene circuit design via library-based search method,” Bioinformatics, vol. 27, no. 19, pp. 2700-6, Oct 1, 2011.
[34] J. R. Kelly, A. J. Rubin, J. H. Davis et al., “Measuring the activity of BioBrick promoters using an in vivo reference standard,” J Biol Eng, vol. 3, pp. 4, 2009.
[35] J. H. Leveau, and S. E. Lindow, “Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria,” J Bacteriol, vol. 183, no. 23, pp. 6752-62, Dec, 2001.
[36] R. Y. Tsien, “The green fluorescent protein,” Annual Review of Biochemistry, vol. 67, pp. 509-544, 1998.
[37] R. Heim, A. B. Cubitt, and R. Y. Tsien, “Improved green fluorescence,” Nature, vol. 373, no. 6516, pp. 663-4, Feb 23, 1995.
[38] J. B. Andersen, C. Sternberg, L. K. Poulsen et al., “New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria,” Appl Environ Microbiol, vol. 64, no. 6, pp. 2240-6, Jun, 1998.
[39] C. M. Southward, and M. G. Surette, “The dynamic microbe: green fluorescent protein brings bacteria to light,” Mol Microbiol, vol. 45, no. 5, pp. 1191-6, Sep, 2002.
[40] B. P. Cormack, R. H. Valdivia, and S. Falkow, “FACS-optimized mutants of the green fluorescent protein (GFP),” Gene, vol. 173, no. 1 Spec No, pp. 33-8, 1996.
[41] G. T. Horn, and R. D. Wells, “The leftward promoter of bacteriophage lambda. Structure, biological activity, and influence by adjacent regions,” The Journal of biological chemistry, vol. 256, no. 4, pp. 2003-9, Feb 25, 1981.
[42] M. Brunner, and H. Bujard, “Promoter recognition and promoter strength in the Escherichia coli system,” EMBO J, vol. 6, no. 10, pp. 3139-44, Oct, 1987.
[43] L. Rao, W. Ross, J. A. Appleman et al., “Factor independent activation of rrnB P1. An "extended" promoter with an upstream element that dramatically increases promoter strength,” J Mol Biol, vol. 235, no. 5, pp. 1421-35, Feb 4, 1994.
[44] R. S. Cox, 3rd, M. G. Surette, and M. B. Elowitz, “Programming gene expression with combinatorial promoters,” Molecular Systems Biology, vol. 3, pp. 145, 2007.
[45] C. R. Albano, L. RandersEichhorn, Q. Chang et al., “Quantitative measurement of green fluorescent protein expression,” Biotechnology Techniques, vol. 10, no. 12, pp. 953-958, Dec, 1996.
[46] X. Wang, B. Errede, and T. C. Elston, “Mathematical analysis and quantification of fluorescent proteins as transcriptional reporters,” Biophys J, vol. 94, no. 6, pp. 2017-26, Mar 15, 2008.
[47] H. de Jong, C. Ranquet, D. Ropers et al., “Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria,” BMC Syst Biol, vol. 4, pp. 55, 2010.
[48] D. W. Selinger, R. M. Saxena, K. J. Cheung et al., “Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation,” Genome research, vol. 13, no. 2, pp. 216-23, Feb, 2003.
[49] H. Alper, C. Fischer, E. Nevoigt et al., “Tuning genetic control through promoter engineering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12678-12683, Sep 6, 2005.
[50] R. Johansson, System modeling & identification, New Jersey: Prentice-Hall International, 1993.
[51] U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits: Chapman & Hall/CRC, 2007.
[52] K. F. Murphy, G. Balazsi, and J. J. Collins, “Combinatorial promoter design for engineering noisy gene expression,” Proc Natl Acad Sci U S A, vol. 104, no. 31, pp. 12726-31, Jul 31, 2007.
[53] K. Hammer, I. Mijakovic, and P. R. Jensen, “Synthetic promoter libraries--tuning of gene expression,” Trends in biotechnology, vol. 24, no. 2, pp. 53-5, Feb, 2006.
[54] G. Chen, and S. H. Hsu, Linear stochastic control systems: CRC, 1995.
[55] W. Zhang, and B. S. Chen, “State feedback H∞ control for a class of nonlinear stochastic systems,” SIAM journal on control and optimization, vol. 44, pp. 1973-1991, 2006.
[56] X. Chen, and K. Zhou, “Multiobjective H2/H∞ control design,” SIAM journal on control and optimization, vol. 40, no. 2, pp. 33, 2002.
[57] B. S. Chen, C. S. Tseng, and H. J. Uang, “Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” Fuzzy Systems, IEEE Transactions on, vol. 8, no. 3, pp. 249-265, 2000.
[58] B. S. Chen, and W. Zhang, “Stochastic H2/H∞ control with state-dependent noise,” IEEE Transactions on Automatic Control, vol. 49, no. 1, pp. 45-57, 2004.
[59] M. Fujita, K. Uchida, and F. Matsumura, “Gain perturbation tolerance in H∞ state feedback control,” International Journal of Control, vol. 51, no. 2, pp. 315-328, Feb, 1990.
[60] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.
[61] B. S. Chen, Y. T. Chang, and Y. C. Wang, “Robust H infinity-stabilization design in gene circuits under stochastic molecular noises: fuzzy-interpolation approach,” IEEE Trans Syst Man Cybern B Cybern, vol. 38, no. 1, pp. 25-42, Feb, 2008.
[62] G. Chesi, “LMI Techniques for Optimization Over Polynomials in Control: A Survey,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2500-2510, 2010.
[63] J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16, no. 1, pp. 122-128, 1986.
[64] D. Goldberg, Genetic algorithms in search, optimization, and machine learning. 1989, 1989.
[65] R. S. Cox, 3rd, M. G. Surette, and M. B. Elowitz, “Programming gene expression with combinatorial promoters,” Mol Syst Biol, vol. 3, pp. 145, 2007.
[66] J. Gertz, E. D. Siggia, and B. A. Cohen, “Analysis of combinatorial cis-regulation in synthetic and genomic promoters,” Nature, vol. 457, no. 7226, pp. 215-8, Jan 8, 2009.
[67] E. Segal, and J. Widom, “From DNA sequence to transcriptional behaviour: a quantitative approach,” Nat Rev Genet, vol. 10, no. 7, pp. 443-56, Jul, 2009.
[68] K. Hammer, I. Mijakovic, and P. R. Jensen, “Synthetic promoter libraries--tuning of gene expression,” Trends Biotechnol, vol. 24, no. 2, pp. 53-55, Feb, 2006.
[69] Y. Yokobayashi, R. Weiss, and F. H. Arnold, “Directed evolution of a genetic circuit,” Proc Natl Acad Sci U S A, vol. 99, no. 26, pp. 16587-91, Dec 24, 2002.
[70] P. R. Jensen, and K. Hammer, “Artificial promoters for metabolic optimization,” Biotechnol Bioeng, vol. 58, no. 2-3, pp. 191-5, Apr 20-May 5, 1998.
[71] K. Hammer, I. Mijakovic, and P. R. Jensen, “Synthetic promoter libraries--tuning of gene expression,” Trends Biotechnol, vol. 24, no. 2, pp. 53-5, Feb, 2006.
[72] H. Alper, C. Fischer, E. Nevoigt et al., “Tuning genetic control through promoter engineering,” Proc Natl Acad Sci U S A, vol. 102, no. 36, pp. 12678-83, Sep 6, 2005.
[73] A. Kinkhabwala, and C. C. Guet, “Uncovering cis regulatory codes using synthetic promoter shuffling,” PLoS One, vol. 3, no. 4, pp. e2030, 2008.
[74] H. M. Salis, E. A. Mirsky, and C. A. Voigt, “Automated design of synthetic ribosome binding sites to control protein expression,” Nature biotechnology, vol. 27, no. 10, pp. 946-50, Oct, 2009.
[75] B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature Biotechnology, vol. 26, pp. 787-793, 2008.
[76] A. Arkin, “Setting the standard in synthetic biology,” Nature Biotechnology, vol. 26, pp. 771-774, 2008.
[77] C. Wang, M. K. Oh, and J. C. Liao, “Directed evolution of metabolically engineered Escherichia coli for carotenoid production,” Biotechnology Progress, vol. 16, no. 6, pp. 922-926, 2000.
[78] T. Bulter, S. Lee, W. Wong et al., “Design of artificial cell-cell communication using gene and metabolic networks,” Proceedings of the National Academy of Sciences, vol. 101, no. 8, pp. 2299-2304, 2004.
[79] W. R. Farmer, and J. C. Liao, “Improving lycopene production in Escherichia coli by engineering metabolic control,” Nature Biotechnology, vol. 18, pp. 533-537, 2000.
[80] M. Tucker, and R. Parker, “Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae.,” Annu. Rev. Biochem., vol. 69, pp. 571-595, 2000.
[81] T. K. Lu, A. S. Khalil, and J. J. Collins, “Next-generation synthetic gene circuits,” Nature biotechnology, vol. 27, no. 12, pp. 1139-50, Dec, 2009.
[82] C. H. Wu, H. C. Lee, and B. S. Chen, “Robust synthetic gene circuit design via library-based search method,” Bioinformatics, vol. [in revision], 2011.
[83] P. E. Purnick, and R. Weiss, “The second wave of synthetic biology: from modules to systems,” Nat Rev Mol Cell Biol, vol. 10, no. 6, pp. 410-22, Jun, 2009.
[84] S. Boyd, L. El Ghaoui, E. Feron et al., Linear matrix inequalities in system and control theory: Society for Industrial Mathematics, 1994.
[85] L. M. Tuttle, H. Salis, J. Tomshine et al., “Model-Driven Designs of an Oscillating Gene circuit,” Biophysical Journal, vol. 89, no. 6, pp. 3873-3883, 2005.
[86] A. Arkin, J. Ross, and H. H. McAdams, “Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells,” Genetics, vol. 149, no. 4, pp. 1633-48, Aug, 1998.