簡易檢索 / 詳目顯示

研究生: 吳長鑫
Chang-Hsin Wu
論文名稱: 浮接場板結構橫向雙擴散金氧半場效電晶體之最佳化設計
The Optimal Design of Floating Field Plate LDMOSFET
指導教授: 龔正
Jeng Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 111
中文關鍵詞: 浮接場板功率元件雙擴散金氧半場效電晶體
外文關鍵詞: floating field plate, RESURF, LDMOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於各種電子產品的推陳出新,使得功率元件的需求大幅增加。為了讓功率元件與平面製程做整合,因此必須將傳統垂直式元件結構改變成橫向式的設計。在這之中最常使用的元件便是橫向式雙擴散金氧半場效電晶體。功率元件的各種改良結構往往會提高生產成本,因此在不提高生產成本的情況下提升元件效能往往是一件困難的工作。
    本論文在400V規格橫向式雙擴散金氧半場效電晶體中加入浮接場板,能夠在不增加任何生產成本的情況下使元件崩潰電壓有顯著地提升。在相同磊晶層濃度下,相較於傳統結構能夠令崩潰電壓提高74.5V。並且也利用模擬軟體來對浮接場板在橫向式雙擴散金氧半場效電晶體中的各種影響做出縝密的分析,最後得到元件的最佳化設計。


    In recent years, following the introducing of state of the art electronic products, demands for power devices have risen substantially. In order to integrate power devices with planar IC process, traditional vertical device needs to be changed to lateral structure. The most commonly used lateral power device is LDMOSFET. Most of the improvements of power device need to increase the cost. Getting better device performance without increasing the cost is often a difficult job.
    In this thesis, we integrate floating field plate into 400V LDMOSFET and get larger breakdown voltage without raising the cost. At the same doping concentration of the epitaxy layer, it can get 74.5V higher than the conventional structure. We also use simulation tools to analyze the effect of floating field plate in LDMOSFET and get optimal design finally.

    第一章 前言..............................................................................................1 第二章 功率元件的起源與發展..............................................................3 2.1 功率元件之起源...................................................................3 2.2 雙擴散金氧半場效電晶體之改良.......................................4 2.2.1 RESURF(REduce SURface Field)結構........................5 2.2.2 金屬場板(Metal field plate)結構.................................5 2.2.3 溝槽式(Trench)結構....................................................6 2.2.4 P型浮接場環(P-type floating field ring)結構..............7 2.2.5超級接面(Super junction)結構.....................................7 2.2.6 REBULF (REduce BULk Field)結構...........................8 2.2.7矽晶絕緣體(Silicon-on-insulator)結構........................9 2.2.8橫向絕緣閘雙極性電晶體(Lateral insulated gate bipolar transistor)並聯結構.........................................9 2.3 BCD製程發展....................................................................10 2.3.1 BCD製程之起源.......................................................10 2.3.2 BCD製程之隔絕技術...............................................11 第三章 功率元件的物理特性...............................................................26 3.1 元件崩潰機制....................................................................26 3.2 衝擊游離化與放大係數(Multiplication coefficient) ........28 3.3 降低表面電場(RESURF)原理...........................................29 3.4 橫向雙擴散金氧半場效電晶體在關閉狀態之操作原理.31 3.5 橫向雙擴散金氧半場效電晶體在關閉狀態之崩潰位置.32 3.6 橫向雙擴散金氧半場效電晶體之導通電阻.....................33 第四章 浮接場板結構橫向雙擴散金氧半場效電晶體之最佳化 設計............................................................................................45 4.1 橫向雙擴散金氧半場效電晶體之製程流程.....................45 4.2 浮接場板(Floating field plate)結構簡介............................45 4.2.1 浮接場板結構之製程優勢........................................45 4.2.2 浮接場板結構之設計理念........................................46 4.2.3 浮接場板結構之電位耦合概念................................48 4.3 元件電性模擬方法.............................................................49 4.4 參數定義.............................................................................50 4.4.1 崩潰電壓(Breakdown voltage) .................................50 4.4.2 導通電阻(On-resistance) .......................................... 51 4.4.3 臨界電壓(Threshold voltage) ....................................52 4.4.4 效能指標(Efficiency index) .......................................52 4.5 浮接場板結構之最佳化設計..............................................52 4.5.1 結構參數定義............................................................53 4.5.2 磊晶層濃度................................................................54 4.5.3 複晶矽浮接場板設計................................................55 4.5.4 金屬浮接場板設計....................................................60 4.5.5 三維變化之金屬浮接場板設計................................63 4.5.6 浮接場板結構元件效能之總整理............................65 第五章 結論..........................................................................................107 參考文獻................................................................................................109

    [1] B. Jayant Baliga, Power Semiconductor Devices, Copyright 1996 by PWS.
    [2] J. A. Appeals, H. M. J. Vaes, “High Voltage Thin Layer Devices (RESURF Devices)”, IEDM Tech. Dig., pp. 238-239, 1979.
    [3] N. Fujishima, M. Saito, A. Kitamura, Y. Urano, G. Tada, Y. Tsuruta, “A 700V Lateral Power MOSFET with Narrow Gap Double Metal Field Plates Realizing Low On-resistance and Long-term Stability of Performance”, ISPSD’01, pp. 255-258.
    [4] Won-So Son, Young-Ho Sohn, Sie-Young Choi, “Effects of A Trench
    under The Gate in Hgh Voltage RESURF LDMOSFET for SOI Power
    Integrated Circuits”, Solid-State Electronics 48, pp. 1629-1635, 2004.
    [5] H. Teranishi, A. Kitamura, Y. Watanabe, M. Ogino, Y. Sugahara, S.
    Kajiwara, K. Mochizuki, S. Wakimoto, M. Iwaya, N. Fujishima, “A
    High Density, Low On-resistance 700V Class Trench Offset Drain
    LDMOSFET (TOD-LDMOS)”, IEDM, Vol. 31, pp. 757-760, 2003.
    [6] Zia Hossain, Mohamed Imam, Joe Fulton, Masami Tanaka,
    “Double-resurf 700 V N-channel LDMOS with Best-in-class
    On-resistance”, Proceedings of the 14th International Symposium on
    Power Semiconductor Devices and ICs, pp. 137-140, 2002.
    [7] Jie Wu, Jian Fang, Bo Zhang, Zhaoji Li, “A Novel Double RESURF
    LDMOS with Multiple Rings in Non-uniform Drift Region”,
    Proceedings. 7th International Conference on Solid-State and
    Integrated Circuits Technology, pp. 349-352, 2004.
    [8] K. Permthammasin, G. Wachutka, M. Schmitt, H. Kapels,
    “Performance Analysis of Novel 600V Super-junction Power
    LDMOS Transistors with Embedded P-type Round Pillars”,
    International Conference on Simulation of Semiconductor Processes
    and Devices 2005, pp. 179-182, 2005.
    [9] Baoxing Duan, Bo Zhang, Zhaoji Li, “A New Reduced Bulk Field
    (REBULF) High-voltage LDMOS with N+-floating Layer”, IEEE
    Communications Circuits and Systems Proceedings, pp. 2709-2712,
    2006.
    [10] P. Ratnam, “Novel Silicon-on-insulator MOSFET for High-voltage Integrated Circuits”, Electronics Letters, Vol. 25, No. 8, pp. 536-537, 1989.
    [11] S. Kaneko, H. Yamagiwa, T. Saji, T. Uno, K. Sawada, “A 800V Hybrid IGBT Having A High Speed Internal Diode for Power-supply Applications”, ISPSD’07, pp. 17-20.
    [12] Donald A. Neamen, Semiconductor Physics and Devices, Copyright
    2003 by McGraw-Hill, 3rd ed.
    [13] Richard S. Muller, Theodore I. Kamins, Mansun Chan (Contributor),
    Device Electronics for Integrated Circuits, Copyright 2003 by John
    Wiley & Sons, 3rd ed.
    [14] Zahir Parpia, C. Andre T. Salama, “Optimization of RESURF
    LDMOS Transistors : An Analytical Approach” IEEE Trans.
    Electron Device, Vol. ED-37, No. 3, pp.789-795, 1990.
    [15] S. M. Sze, Semiconductor Devices : Physics and Technology,
    Copyright 1981 by John Wiley & Sons, 2nd ed.
    [16] David K. Cheng, Field and Wave Electromagnetics, Copyright 1989
    by Addison-Wesley, 2nd ed.
    [17] Jian-Meng, Shan-Gao, Jun-Ning Chen, Dao-Ming Ke, “The Analysis
    and Modeling of On-resistance in High-voltage LDMOS”,
    ICSICT’06. 8th International Conference on Solid-State and
    Integrated Circuit Technology, pp. 1327-1329, 2006.
    [18] Method of fabricating a semiconductor device having a floating field conductor. U. S. Patent # 6110804, Aug. 29, 2000.
    [19] Chun-Hua Zhou, Xiao-Rong Luo, Xiao-Chuan Deng, Jin-Ping Zhaug, Zhao-Ji Li, Bo Zhang, “High Breakdown Voltage 4H-SiC Schottky Barrier Diodes with Floating Metal Rings for MMIC Applications”, ICSICT’06. 8th international conference on Solid-State and Integrated Circuit Technology, pp. 944-946, 2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE