研究生: |
許智涵 Hsu, Chih-Han |
---|---|
論文名稱: |
應用於生醫訊號之二階三角積分調變器及其低電壓低功率設計考量 A Second-Order Delta-Sigma Modulator for Biomedical Application and Low-Voltage Low-Power Design Considerations |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: |
陳新
Chen, Hsin 謝志成 Hsieh, Chih-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 三角積分調變器 、輸入前饋式架構 、低靜態電流電流鏡運算轉導放大器 |
外文關鍵詞: | Delta-Sigma Modulator, Input Feedforward Architecture, Low Quiescent Current Current-Mirror Operational Transconductance Amplifier |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著醫療技術的蓬勃發展,健康照護這個概念已經成為現今生醫領域中的重要發展方向,藉由現今蓬勃發展的電子技術,達成體積小、方便攜帶且可長時間記錄監測的目標。而這種類型的生醫電子系統,低電壓、低功率消耗即為其中非常重要的設計要求之一,而其中類比數位轉換器則扮演著生醫系統中重要的關鍵角色。
本篇論文即是提出一個應用於生醫訊號擷取裝置、可處理大多數生理訊號之2階三角積分調變器;整個電路採用TSMC 90nm MSG 1P9M製程實現,以輸入前饋式架構來降低積分器輸出擺幅,以及採用低靜態電流電流鏡運算轉導放大器(OTA)來降低輸出級電流,以降低整體系統的功率消耗。
整個二階輸入前饋式三角積分調變器操作在1V供電電壓,在10KHz的訊號頻寬、超取樣率為64倍的情形下,所設計的調變器可以達到訊號對雜訊比為66.91 dB、訊號對雜訊與諧波失真比為64.87 dB,相當於有效位元數10.48位元;整個電路的消耗功率為17.14 μW,效能指標為0.6 pJ/conv.,整個晶片(包含Pad)面積為0.75 mm2。
此外,為了更進一步地改善電路效能,論文中亦探討多種能夠更有效地達到低電壓、低功率消耗的技術,像是解決低電壓下開關無法有效導通的靴帶式開關、能夠解決低電壓開關問題且能降低一半功率消耗的切換式運算放大器技術,還有能夠降低一部分功率消耗且能縮小面積的運算放大器共用技術,並說明其設計上的考量,以期未來能夠更進一步改善電路效能。
In recent years, with the rapid development of medical technology, health care, this concept has been implemented by electronic technology to reach the targets such as small volume, portable, and long record data. Among these biomedical electronic systems, low voltage, low power consumption is one of very important design requirements. And analog-to-digital converter (ADC) plays a very important role in these systems.
This thesis presents the design and implementation of a second order delta-sigma modulator, which is applied to biomedical signal acquisition devices that can handle most of the physiological signals. The entire circuit is implemented with TSMC 90nm MSG 1P9M process, by using input feed-forward architecture to reduce the integrator output swing and low quiescent current current-mirror operational transconductance amplifier (OTA) to reduce output current for system low power consumption.
The 2nd order input feedforward delta-sigma modulator operating at 1V supply voltage, with 10KHz signal bandwidth, and oversampling ratio of 64, the designed modulator achieved signal to noise ratio (SNR) of 66.91 dB, signal to noise and distortion ratio (SNDR) of 64.87 dB, equivalent to the effective number of bits (ENoB) of 10.48 bits. The power consumption is 17.14 μW, the figure of merit (FoM) is 0.6 pJ/conv., and the entire chip area (including pad area) is 0.75 mm2.
In addition, this thesis is also to explore some low voltage, low power consumption technologies, such as bootstrapped switch, switched-opamp technique, and opamp-shared technique, and discussing their design considerations to further improve the circuit performances in the future.
[1] Y. R. Firat, S. Kim, T. Torfs, H. Kim and C. V. Hoof, "A 30uW Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring," IEEE Journal of Solid-State Circuits, vol. 46, no. 1, JANUARY 2011.
[2] J. G. Webster, Medical Instrumentation: Application and Design, 4 ed., New York: Wiley, 2009.
[3] Texus Instuments, "ECG Electrocardiogram," [Online]. Available: http://www.ti.com/solution/ecg_electrocardiogram.
[4] EngineersGarage, "How to use inbuilt ADC of AVR microcontroller (ATmega16)," [Online]. Available: http://www.engineersgarage.com/embedded/avr-microcontroller-projects/adc-circuit.
[5] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2 ed., Oxford University Press, 2002.
[6] D. A. Johns and K. Martin, Analog Integrated Circuit Design, NewYork: John Wiley, 1997.
[7] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converter, John Wiley & Sons, 2005.
[8] N. Oliver and H. K. Robert, "A 19-Bit Low-Power Multibit Sigma-Delta ADC Based on Data Weighted Averaging," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 32, no. 7, July 1997.
[9] C. C. Cutler, "Transmission System Employing Quantization". U.S. Patent No. 2,927,962, 8 MARCH 1960.
[10] H. Inose, Y. Yasuda and J. Murakami, "A Telemetering System by Code Modulation - Δ- Σ Modulation," IRE Transactions on Space Electronics and Telemetry, vol. 8, no. 3, pp. 204-209, SEPTEMBER 1962.
[11] J. M. d. l. Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 58, no. 1, JANUARY 2011.
[12] Z. Jinghua, Y. Lian, L. Yao and B. Shi, "A 0.6-V 82-dB 28.6-uW Continuous-Time Audio Delta-Sigma Modulator," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 46, no. 10, OCTOBER 2011.
[13] S. Pavan, N. Krishnapura, R. Pandarinathan and P. Sankar, "A Power Optimized Continuous-Time ΔΣ ADC for Audio Applications," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 43, no. 2, FEBRUARY 2008.
[14] M. S. Kappes, "A 2.2-mW CMOS Bandpass Continuous-Time Multibit Δ-Σ ADC with 68 dB of Dynamic Range and 1-MHz Bandwidth For Wireless Applications," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 38, JULY 2003.
[15] J. Ryckaert, J. Borremans, B. Verbruggen, L. Bos, C. Armiento, J. Craninckx and G. Van der Plas, "A 2.4 GHz Low-Power Sixth-Order RF Bandpass ΔΣ Converter in CMOS," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 44, no. 11, NOVEMBER 2009.
[16] M. Dessouky and A. Kaiser, "Very Low-Voltage Digital-Audio Sigma-Delta Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 36, no. 3, MARCH 2001.
[17] S. Rabii and B. A. Wooley, The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, Kluwer Academic Publishers, 1999.
[18] V. Peluso, P. Vancorenland, A. M. Marques, M. S. J. Steyaert and W. Sansen, "A 900-mV Low-Power ∆Σ A/D Converter with 77-dB Dynamic Range," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 33, no. 12, DECEMBER 1998.
[19] J. Roh, S. Byun, Y. Choi, H. Roh, Y.-G. Kim and J.-K. Kwon, "A 0.9-V 60-uW 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 43, no. 2, FEBRUARY 2008.
[20] L. Yao, M. S. J. Steyaert and W. Sansen, "A 1-V 140-uW 88-dB Audio Sigma-Delta Modulator in 90-nm CMOS," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 39, no. 11, NOVEMBER 2004.
[21] A. F. Yeknami, F. Qazi, J. J. Dabrowski and A. Alvandpour, "Design of OTAs for Ultra-Low-Power Sigma-Delta ADCs in Medical Applications," in International Conference on Signals and Electronic Systems (ICSES), Gliwice, Poland, 2010.
[22] Y. Chae and G. Han, "Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 44, no. 2, FEBRUARY 2009.
[23] J. Hamilton, S. Yan and T. R. Viswanathan, "A Discrete-Time Input ΔΣ ADC Architecture Using a Dual-VCO-Based Integrator," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, vol. 57, no. 11, NOVEMBER 2010.
[24] S.-Y. Lee and C.-J. Cheng, "A Low-Voltage and Low-Power Adaptive Switched-Current Sigma-Delta ADC for Bio-Acquisition Microsystems," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 53, no. 12, DECEMBER 2006.
[25] J. Sauerbrey, T. Tille, D. Schmitt-Landsiedel and R. Thewes, "A 0.7-V MOSFET-Only Switched-Opamp ΣΔ Modulator in Standard Digital CMOS Technology," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 37, no. 12, DECEMBER 2002.
[26] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato and A. Baschirotto, "Behavioral Modeling of Switched-Capacitor Sigma-Delta Modulators," IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, vol. 50, no. 3, March 2003.
[27] G. C. Temes, "Finite Amplifier Gain and Bandwidth Effects in Switched-Capacitor Filter," IEEE Journal of Solid State Circuits, vol. 15, pp. 358-361, June 1980.
[28] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[29] C. C. Enz and G. C. Temes, "Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization," Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, November 1996.
[30] E. López-Morillo, R. G. Carvajal, F. Muñoz, H. E. Gmili, A. Lopez-Martin, J. Ramírez-Angulo and E. Rodríguez-Villegas, "A 1.2-V 140-nW 10-bit Sigma-Delta Modulator for Electroencephalogram Applications," IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, vol. 2, no. 3, SEPTEMBER 2008.
[31] A. Gerosa and A. Neviani, "A 1.8-uW Sigma-Delta Modulator for 8-Bit Digitization of Cardiac Signals in Implantable Pacemakers Operating Down to 1.8 V," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, vol. 52, no. 2, FEBRUARY 2005.
[32] S. Pavan and P. Sankar, "Power Reduction in Continuous-Time Delta-Sigma Modulators Using the Assisted Opamp Technique," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 45, no. 7, July 2010.
[33] J. Roh, "High-Gain Class-AB OTA with Low Quiescent Current," in Analog Integrated Circuits and Signal Processing, 2006.
[34] R. J. Baker, CMOS Mixed Signal Circuit Design, John Wiley & Sons, 2009.
[35] C.-H. Kuo, D.-Y. Shi and K.-S. Chang, "A Low-Voltage Fourth-Order Cascade Delta-Sigma Modulator in 0.18-um CMOS," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 57, no. 9, SEPTEMBER 2010.
[36] J. Goes, B. Vaz, R. Monteiro and N. Paulino, "A 0.9V ∆Σ Modulator with 80dB SNDR and 83dB DR Using a Single-Phase Technique," in IEEE International Solid-State Circuits Conference, 2006.
[37] S. Pin-Han and C. Herming, "The Design of Low-Power CIFF Structure Second-Order Sigma-Delta Modulator," in 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009.
[38] A. Baschirotto and R. Castello, "A 1-V 1.8-MHz CMOS Switched-Opamp SC Filter with Rail-to-Rail Output Swing," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 32, no. 12, DECEMBER 1997.
[39] V. Peluso, Design Of Low-Voltage Low-Power CMOS Delta-sigma A/D Converters, Kulwer Academic Publishers, 1999.
[40] J. Goes, N. Paulino, H. Pinto, R. Monteiro, B. Vaz and A. S. Garção, "Low-Power Low-Voltage CMOS A/D Sigma-Delta Modulator for Bio-Potential Signals Driven by a Single-Phase Scheme," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 52, no. 12, DECEMBER 2005.
[41] M. G. Kim, G.-C. Ahn, P. K. Hanumolu, S.-H. Lee, S.-H. Kim, S.-B. You, J.-W. Kim, G. C. Temes and U.-K. Moon, "A 0.9 V 92 dB Double-Sampled Switched-RC Delta-Sigma Audio ADC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 43, no. 5, MAY 2008.
[42] D. Senderowicz, G. Nicollini, S. Pernici, A. Nagari, P. Confalonieri and C. Dallavalle, "Low-Voltage Double-Sampled ΣΔ Converters," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 32, no. 12, DECEMBER 1997.
[43] C.-M. Hsu, T. C. Yo and C.-H. Luo, "An Ultra-Low Power Variable-Resolution Sigma-Delta Modulator for Signals Acquisition of Biomedical Instrument," IEICE TRANS. ELECTRON., Vols. E90-C, no. 9, SEPTEMBER 2007.
[44] A. Silva, N. Horta and J. Guilherme, "A reconfigurable A/D converter for 4G wireless systems," in IEEE International Symposium on Circuits and Systems, 2008. ISCAS 2008., 2008.
[45] A. Morgado, R. del Río and J. M. de la Rosa, "An Adaptive ΣΔ Modulator for Multi-Standard Hand-held Wireless Devices," in IEEE Asian Solid-State Circuits Conference, Jeju, Korea, 2007.
[46] S. Kim, J.-Y. Lee, S.-J. Song, N. Cho and H.-J. Yoo, "An Energy-Efficient Analog Front-End Circuit for a Sub-1-V Digital Hearing Aid Chip," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 41, no. 4, APRIL 2006.
[47] M. Steyaert, J. Crols and S. Gogaert, "Switched-Opamp, a Technique for Realising full CMOS Switched-Capacitor Filters at Very Low Voltages," in Solid-State Circuits Conference, 1993. ESSCIRC '93. 19th European, 1993.