簡易檢索 / 詳目顯示

研究生: 巫啟禎
Wu, Chi-Jen
論文名稱: 新式類循環低密度偶校碼之建構
New Constructions of Equal Error Protection and Unequal Error Protection QC-LDPC Codes
指導教授: 趙啟超
Chao, Chi-chao
口試委員: 呂忠津
林茂昭
楊谷章
蘇育德
陸曉峯
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 134
中文關鍵詞: 低密度偶校碼類循環碼非均等錯誤保護可變碼率屏蔽
外文關鍵詞: low-density parity-check (LDPC) codes, quasi-cyclic (QC) codes, unequal error protection (UEP), variable rate, masking
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低密度偶校碼 (Low-Density Parity-Check Codes) 已被證實當運用疊代訊號傳遞解碼 (Iterative Message Passing Decoding) 及配合極長的碼長時,會有接近薛農極限 (Shannon limit) 的表現。但大部分低密度偶校區塊碼是由隨機建構方式去設計,因其沒有特殊建構,導致在編碼與解碼時有很大的複雜度。因此在最近研究中發明了有代數結構的類循環低密度偶校碼 (Quasi-Cyclic Low-Density Parity-Check Codes),這是一種編碼複雜度相對低很多的低密度偶校碼。我們可以將其應用在許多系統上,像是封包交換網路等。
    在此論文中,我們首先對類循環低密度偶校碼提出了具有良好距離與循環特性的新建構方式,模擬結果顯示,在高訊號雜訊比時,透由我們提出的建構方式所得到的碼,會比前人建構出來的碼有較好的表現。第二部分,我們藉由屏蔽方法提出了新式非均等錯誤保護類循環低密度偶校碼的建構方式,這些建構出來的碼由模擬結果顯示具有非均等錯誤保護的效果存在,且效能會比傳統分時系統為佳。此外,這些建構方式可以因應不同應用而建構出具不同區塊長度及碼率的碼。最後,我們提出了由屏蔽方法去建造可變碼率的非均等錯誤保護類循環低密度偶校碼。藉由此結果可設計出具有合適長度與多樣碼率的非均等錯誤保護類循環低密度偶校碼給實際系統使用。模擬結果顯示這些建造出來的碼具有優異的錯誤保護能力。


    Low-density parity-check (LDPC) block codes have been shown to have near-capacity perfor- mance with iterative message-passing decoding and sufficiently long block length. However, quite a number of methods for designing LDPC block codes are based on random construc- tions; the lack of structures leads to serious disadvantages of high complexity in encoding and decoding. Therefore, in recent researches, codes with algebraic structures have been devel- oped, among which quasi-cyclic LDPC (QC-LDPC) codes are an important class. They can be encoded and decoded with low complexity, suitable for many applications such as packet- switching networks. In this dissertation, we first develop new constructions of QC-LDPC codes with good distance and girth properties. Simulation results show that the constructed codes can have better error performance than previous codes at high signal-to-noise ratios.
    Constructions of unequal error protection (UEP) QC-LDPC codes are also provided in this dissertation. A criterion for constructing UEP QC-LDPC codes via the masking technique is given, based on which explicit conditions on the base parity-check matrices and masking matrices are provided. Three specific constructions of UEP QC-LDPC codes are also presented. Furthermore, a sufficient condition to ensure strict UEP is developed. Simulation results show that the constructed UEP codes can indeed provide coded bits with different protection levels and perform better than traditional time-sharing schemes.
    Finally constructions of variable-rate UEP QC-LDPC codes are developed. The criteria which guarantee that a higher-rate QC-LDPC code can be obtained by adding column-blocks to or removing row-blocks from the parity-check matrix of a given lower-rate QC-LDPC code are provided. Then the conditions on the base parity-check matrices and masking matrices are given. We also present specific constructions of variable-rate UEP QC-LDPC codes. Simulation results show that all the constructed codes can indeed provide coded bits with different error-correcting capabilities and have good error performance.

    1 Introduction 1.1 Motivation and Literature Review 1.2 Organization and Main Results 2 Preliminaries 2.1 Low-Density Parity-Check Codes 2.2 Quasi-Cyclic Low-Density Parity-Check Codes 2.3 Masking for QC-LDPC Codes 3 New Constructions of QC-LDPC Codes with Enlarged Minimum Distance 3.1 Chapter Overview 3.2 New Constructions of Regular QC-LDPC Codes 3.3 New Constructions of Irregular QC-LDPC Codes 3.4 Simulation Results 3.5 Concluding Remarks 4 New UEP Constructions of QC-LDPC Codes via Masking 4.1 Chapter Overview 4.2 Construction of UEP QC-LDPC Codes via Masking 4.3 Sufficient Condition to Ensure Strict UEP 4.4 Simulation Results 4.5 Concluding Remarks 5 New Constructions of Variable-Rate UEP QC-LDPC Codes 5.1 Chapter Overview 5.2 Constructions of Variable-Rate UEP QC-LDPC Codes by Adding Column-Blocks 5.3 Constructions of Variable-Rate UEP QC-LDPC Codes by Removing Row-Blocks 5.4 Simulation Results 5.5 Concluding Remarks 6 Conclusion

    [1] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 8, pp. 21–28, Jan. 1962.
    [2] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. The- ory, vol. 27, pp. 533–547, Sep. 1981.
    [3] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519, Feb. 2001.
    [4] D. J. C. Mackay and M. C. Davey, “Evaluation of Gallager codes for short block length and high rate applications,” in Codes, Systems, and Graphical Models. B. Marcus and J. Rosenthal, eds. New York: Springer-Verlag, 2001, pp. 113–130.
    [5] M. P. C. Fossorier, “Quasi-cyclic low density parity-check codes from circulant permu- tation matrices,” IEEE Trans. Inf. Theory, vol. 50, pp. 1788–1793, Aug. 2004.
    [6] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, Jr., “LDPC block and convolutional codes based on circulant matrices,” IEEE Trans. Inf. Theory, vol. 50, pp. 2966–2984, Dec. 2004.
    [7] J. Xu, L. Chen, I. Djurdjevic, and S. Lin, “Construction of regular and irregular LDPC codes: Geometry decomposition and masking,” IEEE Trans. Inf. Theory, vol. 53, pp. 121–134, Jan. 2007.
    [8] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge, UK: Cambridge University Press, 2009.
    [9] R. Smarandache and P. O. Vontobel, “Quasi-cyclic LDPC codes: Influence of proto- and Tanner-graph structure on minimum Hamming distance upper bounds,” IEEE Trans. Inf. Theory, vol. 58, pp. 585–607, Feb. 2012.
    [10] Q. Huang, Q. Diao, S. Lin, and K.Abdel-Ghaffar, “Cyclic and quasi-cyclic LDPC codes on constrained parity-check matrices and their trapping sets,” IEEE Trans. Inf. Theory, vol. 58, pp. 2648–2674, May 2012.
    [11] J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Con- struction, low error-floor, large girth and a reduced-complexity decoding scheme,” IEEE Trans. Commun., vol. 62, pp. 2626–2637, Aug. 2014.
    [12] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Allerton Conf. Commun., Control, and Computing, Monticello, IL, Oct. 2003, pp. 1426–1435.
    [13] B. Masnick and J. Wolf, “On linear unequal error protection codes,” IEEE Trans. Inf. Theory, vol. 13, pp. 600–607, Oct. 1967.
    [14] L. A. Dunning and W. E. Robbins, “Optimum encoding of linear block codes for unequal error protection,” Inform. Contr., vol. 37, pp. 150–177, 1978.
    [15] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Proc. IEEE, vol. 91, pp. 489–502, Apr. 2003.
    [16] J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible puncturing of low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 50, pp. 2824–2836, Nov. 2004.
    [17] C. H. Hsu and A. Anastasopoulos, “Capacity achieving LDPC codes through punctur- ing,” IEEE Trans. Inf. Theory, vol. 54, pp. 4698–4706, Oct. 2008.
    [18] B. N. Vellambi and F. Fekri, “Finite-length rate-compatible LDPC codes: A novel puncturing scheme,” IEEE Trans. Commun., vol. 57, pp. 297–301, Feb. 2009.
    [19] J. Kim, A. Ramamoorthy, and S. Mclaughlin, “The design of efficiently-encodable rate- compatible LDPC codes,” IEEE Trans. Commun., vol. 57, pp. 365–375, Feb. 2009.
    [20] X. Yang, D. Yuan, P. Ma, and M. Jiang, “New research on unequal error protection (UEP) property of irregular LDPC codes,” in Proc. IEEE Consumer Commun. Net- working Conf., Las Vegas, NV, Jan. 2004, pp. 361–363.
    [21] C. Poulliat, D. Declercq, and I. Fijalkow, “Optimization of LDPC codes for UEP chan- nels,” in Proc. IEEE Int. Symp. Inform. Theory, Chicago, IL, Jun. 2004, p. 451.
    [22] N. Rahnavard and F. Fekri, “Unequal error protection using low-density parity-check codes,” in Proc. IEEE Int. Symp. Inform. Theory, Chicago, IL, Jun. 2004, p. 449.
    [23] ——, “New results on unequal error protection using LDPC codes,” IEEE Commun. Lett., vol. 10, pp. 43–45, Jan. 2006.
    [24] N. Rahnavard, H. Pishro-Nik, and F. Fekri, “Unequal error protection using partially regular LDPC codes,” IEEE Trans. Commun., vol. 55, pp. 387–391, Mar. 2007.
    [25] X. Lin and W. Wu, “LDPC codes for unequal error protection,” in Proc. Int. Conf. Signal Process., Beijing, China, Aug. 2004, pp. 1798–1800.
    [26] V. Kumar and O. Milenkovic, “On unequal error protection LDPC codes based on Plotkin-type constructions,” IEEE Trans. Commun., vol. 54, pp. 994–1005, Jun. 2006.
    [27] I. Shahid and P. Yahampath, “Distributed joint source-channel coding using unequal error protection LDPC codes,” IEEE Trans. Commun., vol. 61, pp. 3472–3482, Aug. 2013.
    [28] L. Xu, H. Wu, J. He, and L. Wang, “Unequal error protection for radiography image transmission using protograph double LDPC codes,” in Wireless Telecommun. Symp., Phoenix, AZ, Apr. 2013, pp. 1–5.
    [29] L. Xu, L. Wang, S. Hong, and H. Wu, “New results on radiography image transmission with unequal error protection using protograph double LDPC codes,” in 2014 8th Int. Symp. on Medical Inform. and Commun. Technology, Florence, Italy, Apr. 2014, pp. 1–4.
    [30] K. Huang, C. Liang, X. Ma, and B. Bai, “Unequal error protection by partial super- position transmission using low-density parity-check codes,” IET Commun., vol. 8, pp. 2348–2355, Sep. 2014.
    [31] A. I. V. Casado, W.-Y. Weng, S. Valle, and R. D. Wesel, “Multiple-rate low-density parity-check codes with constant block-length,” IEEE Trans. Commun., vol. 57, pp. 75–83, Jan. 2009.
    [32] L. Fan, K. Peng, C. Pan, and J. Song, “Multiple-rate multiple-length QC-LDPC codes design with near Shannon limit performance,” in Proc. IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting, London, UK, Jun. 2013, pp. 1–6.
    [33] Y. Liu and K. Peng, “Construction of multi-rate high performance QC-LDPC codes with low implementation complexity,” in Proc. IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting, Beijing, China, Jun. 2014, pp. 1–6.
    [34] C.-J. Wu, C.-H. Wang, and C.-C. Chao, “A new construction of UEP QC-LDPC codes,” in Proc. IEEE Int. Symp. Inform. Theory, Austin, TX, Jun. 2010, pp. 849–853.
    [35] ——, “Unequal error protection QC-LDPC codes via masking,” in Proc. Int. Symp. Inform. Theory and its Applicat., Honolulu, HI, Oct. 2012, pp. 546–550.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE