簡易檢索 / 詳目顯示

研究生: 胡嘉鳳
Chia-Feng Hu
論文名稱: 研究Mo/Fe/Al/SiO2 催化系統之組合以控制化學氣相沉積成長單壁奈米碳管之直徑分佈
Control of the diameter distribution of CVD grown single-walled carbon nanotubes by optimizing the Mo/Fe/Al/SiO2 catalytic system
指導教授: 蔡春鴻
Chuen-horng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 81
中文關鍵詞: 單壁奈米碳管催化裂解化學氣相沉積法直徑控制
外文關鍵詞: SWNTs, Thermal-CVD, diameter control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   單壁奈米碳管是由一層石墨層捲曲成中空圓柱狀,兩端分別由似C60的半球結構組合而成。隨著石墨層捲曲的方向(稱為螺旋性),單壁奈米碳管會因其結構與直徑而呈現金屬或半導性的電特性。為了未來元件的應用,單壁奈米碳管的臨場成長與直徑控制儼然已成為目前研究團隊爭相研究的目標。在此,我們成功地提出利用催化裂解化學氣相沉積法在Mo/Fe/Al/SiO2的催化系統中合成高品質、窄直徑分佈的單壁奈米碳管。隨著對SiO2、Al、Fe 厚度的改變,我們發現Al對單壁奈米碳管的品質與產量有很大的貢獻。同時,我們籍由一系列的製程設計與規劃,可以得到最佳化的催化系統參數Mo(0.5nm)/Fe(1nm)/Al(5nm)/ SiO2(100nm),其幾乎無雜質、結晶性佳(拉曼光譜G/D比超過45)且直徑分佈在0.8-1.4nm(大多數落在1.2nm)的單壁奈米碳管也在文中呈獻。最後,我們提出機制解釋並歸納說明奈米碳管品質與直徑隨催化系統參數而改變的原因。並期望在本實驗室的研究努力下,將高比例、均一直徑的單壁奈米碳管應用在CNT-FET元件上。


      A single-walled carbon nanotube (SWNT) is a graphene layer rolled up into a cylinder, with its end cap structure similar to the half of C60. Depending on their (m, n) indices, SWNTs have different electrical properties. SWNTs can be metallic, semiconducting or small-gap semiconducting, depending on their structure and diameters. So control of the diameter of single-walled carbon nanotubes becomes the challenge of developing SWNTs-based nanoelectronic devices. A reliable method of controlling the diameter distribution of single-walled carbon nanotubes is needed. In this thesis, we presented a study of synthesizing high quality SWNTs with narrow diameter distribution by optimizing the Mo/Fe/Al/SiO2 catalytic system in thermal CVD. It was found that thickness of Al layer had significant effects on the quality of SWNTs. A high quality, almost bundle-free, SWNTs with G/D area ratio of 45 was obtained by optimizing the catalytic system with Mo(0.5nm)/Fe(1nm)/Al(5nm)/SiO2(100nm) multi-layer catalyst and the CVD growth process parameters. A narrow diameter distribution of 0.8~1.4 nm (mostly ~1.2 nm) was achieved. Finally, we summarized these results by proposing a SWNTs growth mechanism with multi-layer catalytic system to explain the effects of varying the thickness of each layer.

    Abstract (Chinese) I Abstract II Acknowledgement (Chinese) III Table of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Structure of carbon nanotubes 2 1.2 Properties of carbon nanotubes 4 1.2.1 Electrical Properties 4 1.2.2 Mechanical properties 5 1.2.3 Thermal properties 6 1.3 Synthesis of carbon nanotubes 7 1.3.1 Arc discharge 7 1.3.2 Laser ablation 9 1.3.3 Chemical vapor deposition 10 1.4 Applications of carbon nanotubes 11 1.4.1 Field emission display 11 1.4.2 Field effect transistors 12 1.4.3 Storage of hydrogen gas 13 1.5 Motivation 14 Chapter 2 Literature review 15 2.1 Diameter control 15 2.1.1 Wet catalyst 16 2.1.2 Dry catalyst 18 2.2 Multilayer catalyst system 21 2.2.1 Mo/Fe/Al/ SiO2 21 2.3 SWNTs growth mechanism 25 2.3.1 Vapor-Liquid-Solid growth mechanism 27 2.3.2 Solid-liquid-solid growth mechanism 28 Chapter 3 Experimental methods 29 3.1 Experimental flow 30 3.2 Preparation of samples 31 3.2.1 Wafer cleaning 31 3.2.2 Photolithography 31 3.2.3 E-gun evaporation 32 3.2.4 Lift-off PR 34 3.3 Synthesis of carbon nanotubes by CVD 34 3.4 Characterization 36 3.4.1 Scanning Electron Microscope (SEM) 36 3.4.2 Micro-Raman spectroscope (μ-Raman) 37 3.4.3 Atomic Force Microscope (AFM) 38 Chapter 4 Results and discussion 40 4.1 For varied thickness of SiO2 40 4.2 For varied thick thickness of Al 46 4.3 For varied thinner thickness of Al 57 4.4 For varied thickness of Fe 62 4.5 Discussion on trend and mechanism 66 Chapter 5 Conclusion 74 Appendix A. The AFM images of the SWNTs 75 Appendix B. XPS depth profile for Al thickness 5nm 76 Appendix C. XPS depth profile for SiO2 thickness 10nm 78 References 80

    [1] H. W. Kroto, J. R. Heath, S. C. O. Brien, R. F. Curl and R. E. Smalley, Nature 1985, 318, 162-163.
    [2] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
    [3] S. Iijima, Nature 1991, 354, 56-58.
    [4] S. Iijima, T. Ichihashi, Nature 1993, 363, 603–605.
    [5] M. M. J. Treacy, T. W. Ebbessen and J. M. Gilson, Nature 1996, 381, 678-680.
    [6] E.W. Wong, P. E. Sheehan, C. M. Lieber, Science 1997, 277, 1971-1975
    [7] J. Hone, M. Whitney, C. Piskoti and A. Zettl, Phys. Rev. B 1999, 59, R2514-R2516.
    [8] M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris (Eds.), Carbon nanotubes: Synthesis, Structure, Properties, and Applications, Springer–Verlag, Berlin, 2001.
    [9] D. S. Bethune, C. H. Kiang, M. DeVries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 1993, 363, 605-607
    [10] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tom□nek, J. E. Fischer and R. E. Smalley, Science 1996, 273, 483-487.
    [11] A.G. Rinzler, R.E. Smalley et al., Science 1995, 269, 1550–1553.
    [12] W. B. Choi, J. M. Kim et al., Appl. Phys. Lett. 1999,75 , 3129-3131.
    [13] S. J. Tans, A. R. M. Verschueren and C. Dekker, Nature 1998, 393, 49-52.
    [14] A.C.Dillon, K.M.Jones, T.A.Bekkedahl, C.H.Kiang,D.S.Bethune and M.J.Heben: Nature 1997, 386, 377
    [15] L. An, J. M. Owens, L. E. McNeil and J. Liu, J. Am. Chem. Soc. 2002, 125, 13688-13689.
    [16] S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman , J. Am. Chem. Soc. 2003, 125, 11186-11187.
    [17] Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang and H. J. Dai, J. Phys. Chem. B 2001, 105, 11424-11431.
    [18] M. Ishida, H. Hongo, F Nihey and Y. Ochiai, Jpn. J. Appl. Phys. 2004, 43, L1356-L1358.
    [19] A. Javey and H. J. Dai, J. Am. Chem. Soc. 2005, 127 ,11942-11943.
    [20] T.de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen and D. Mathys, J. Phys. Chem. B 2004, 108, 7728-7734.
    [21] T. de los Arcos, M. G. Garnier and P. Oelhafen, Carbon 2004, 42, 187-190.
    [22] T. de los Arcos, Z. M. Wu and P. Oelhafen, Chemical Physics Letters 2003, 380, 419-423.
    [23] L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen and M. Meyyappan, Chemical Physics Letters 2001, 348, 368-374.
    [24] R. G. Lacerda, K. B. K. Teo, A. S. Teh, M. H. Yang, S. H. Dalal, D. A. Jefferson, J. H. Durrell, N. L. Rupesinghe, D. Roy, G. A. J. Amaratunga, and W. I. Milne, J. Appl. Phys. 2004, 96, 4456-4462
    [25] I. T. Han, B. K. Kim, H. J. Kim, M. Yang, Y. W. Jin, S. Jung, N. Lee, S. K. Kim and J. M. Kim, Chemical Physics Letters 2004, 400, 139–144
    [26] W. Wongwiriyapan, M. Katayama, T. Ikuno, N. Yamauchi, T. Mizuta, T. Murakami, S. I. Honda, K. Oura, K. Kisoda and H. Harima, Jpn. J. Appl. Phys. 2005, 44, 457-460
    [27] J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, Phys. Rev. Lett. 2001, 87, 275504
    [28] A. Gorbunov, O. Jost , W. Pompe and A. Graff, Carbon 2002, 40, 113–118
    [29] H. C. Su, K. Y. Shin, K. C. Leou and C. H. Tsai, “On the roles of multilayered metal catalysts in the synthesis of high-quality single-walled carbon nanotubes”, IEEE Conference on Emerging Technologies – Nanoelectronics, Jan. 10-13, 2006
    [30] K. Y. Shin, H. C. Su and C. H. Tsai, J. Vac. Sci. Technol. B. 2006, 24, 358-363
    [31] A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus and M. S. Dresselhaus, New Journal of Physics 2003, 5, 139.1-139.17

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE