簡易檢索 / 詳目顯示

研究生: 蘇子祐
Su, Tzu-Yu
論文名稱: 高效能分散式放大器設計與分析
Design and Analysis of High Performance Distributed Amplifier
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 41
中文關鍵詞: 分散式放大器
外文關鍵詞: distributed amplifier
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之重點在於採用分散式架構,設計一高效能寬頻放大器,主要目標為降低功耗與晶片面積,並同時能有效提升寬頻放大器之增益頻寬。
    文中一開始將實做一使用電感增強頻寬之串疊架構的分散式放大器,分別採用日月光半導體之Above-IC製程,與0.18微米台積電標準CMOS製程,試以比較兩者之特性,試圖藉由Above-IC製程改善被動元之高頻特性,減少高頻集膚效應對整體電路的影響,經由量測結果可知,Above-IC製程的確可改善電路高頻特性,並達到低功耗之分散式放大器。
    再來設計一以變壓器為基底之分散式放大器,採用台積電0.18微米與0.13微米製程,試以變壓器取代傳統分散式放大器之電感,如此可以在低功耗的操作下,達到高增益頻寬的分散式放大器。


    This study focuses on designing a high performance broadband amplifier using distributed topology. The main target is to reduce the power consumption and chip area, and improve the gain-bandwidth of distributed amplifier at the same time.
    First, the bandwidth-enhanced cascode topology by inductor is adopted. And the circuit is fabricated by ASE Above-IC technology and 0.18μm tsmc standard CMOS technology respectively. The Above-IC technology could improve the passive components characteristics and reduce the impact of skin effect in high frequency. From the measurement, Above-IC technology could improve the circuit high frequency performance, and reduce the power consumption.
    Next, the transformer-based distributed amplifier using tsmc 0.18μm and 0.13μm standard CMOS technology are presented. With transformers replacing the inductors in traditional distributed amplifier, the high gain-bandwidth distributed amplifier could be achieved under low power consumption.

    ACKNOWLEDGMENT 1 ABSTRCT 2 CONTENTS 4 LIST OF FIGURES 5 LIST OF TABLES 6 Chapter 1 Introduction 7 1.1 Motivation 7 1.2 Thesis Organization 8 Chapter 2 Basic Concepts of Distributed Amplifier 10 2.2 The Applications of Distributed Amplifier 10 2.2 The Principles of Distributed Amplifier 10 Chapter 3 Distributed Amplifier using Above-IC Technology 17 3.1 Motivation 17 3.2 Introduction to Above-IC Technology 17 3.3 Above-IC Distributed Amplifier Design 18 3.4 Simulation and Measurement Result 22 3.5 Summary and Discussions 26 Chapter 4 Transformer-based Distributed Amplifier Design and Analysis 27 4.1 Motivation 27 4.2 Proposed Circuit Topology and Analysis 27 4.3 Simulation and Measurement Result 32 4.4 Summary and Discussions 37 Chapter 5 Conclusions and Future Work 38 5.1 Conclusions 38 5.2 Future Works 38 REFENCES 39

    [1] R. C. Liu et al., “Design and analysis of DC-to-14 GHz and 22 GHz CMOS cascade distributed amplifier, ” IEEE J. Solid-State Circuits, vol.39, no. 8, pp. 1370–1374, Aug. 2004.
    [2] L.H. Lu, T.-Y. Chen, and Y.-J. Lin, “A 32-GHz non-uniform distributed amplifier in 0.18-μm CMOS, ”Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 754–747, Nov. 2005.
    [3] K. Moez and M. Elmasry, “A 10 dB 44 GHz loss-compensated CMOS distributed amplifier,” IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 548–549.
    [4] X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems, ” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3278–3283, Aug. 2006.
    [5] P. Heydari, “Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA, ” IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp1892-1903, Sept. 2007.
    [6] R. E. Amaya, N. G. Tarr, and C. Plett, “A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguide,” Proc. IEEE RFIC Symp., 2004, pp. 193–196.
    [7] H. Shigematsu, M. Sato, T. Hirose, F. Brewer, and M. Rodwell, “40 Gb/s CMOS distributed amplifier for fiber-optic communication systems,” Proc. IEEE Int. Solid-State Circuits Conf., 2004, pp. 476–477.
    [8] J.-C. Chien, T.-Y. Chen, and L.-H. Lu, “A 9.5-dB 50-GHz matrix distributed amplifier in 0.18-μm CMOS,” Symp. VLSI Circuits Dig.Tech. Papers, Jun. 2006, pp. 182–183.
    [9] J.-C. Chien and L.-H. Lu, “40Gb/s High-Gain Distributed Amplifiers with Cascaded Gain Stages in 0.18μm CMOS,” ISSCC Dig. Tech. Papers, pp. 538-539, Feb. 2007.
    [10] K. Moez and M. Elmasry, “A 10 dB 44 GHz loss-compensated CMOS distributed amplifier,” IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 548–549.
    [11] R.-C. Liu, T.-P.Wang, L.-H. Lu, and H.Wang, “An 80 GHz travelingwave amplifier in a 90 nm CMOS technology,” IEEE ISSCC Dig.Tech. Papers, Feb. 2005, pp. 154–155.
    [12] F. Ellinger,“60-GHz SOI CMOS traveling-wave amplifier with NF below 3.8 dB from 0.1 to 40 GHz,” IEEE J. Solid-State Circ., vol. 40, no. 2, pp. 553–558, Feb. 2005.
    [13] M. Tsai, H.Wang, J. Kuan, and C. Chang, “A 70 GHz cascaded multistage distributed amplifier in 90 nm CMOS technology, ” in Proc. Int. Solid-State Conf., 2005, vol. 1, pp. 402-403.
    [14] B. Kleveland, C. H. Diaz, and L. Madden, “Monolithic CMOS distributed amplifier and oscillator, ” in Proc. IEEE. Int. Solid-State Conf., 1999, pp. 70–71.
    [15] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J.Solid-State Circuits, vol. 35, pp. 1368–1382, Sept. 2000.
    [16] A. Shameli and P. Heydari, “A novel ultra-low power (ULP) low noise amplifier using differential inductor feedback,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), 2006, pp. 352–355.
    [17] A. Shekhar, X. Li, and D. J. Allstot, “A CMOS 3.1–10.6 GHz UWB LNA employing staggered compensated series peaking, ” in Proc. IEEE RFIC Symp., 2006, pp. 63–66.
    [18] J. B. Beyer et al., “MESFET distributed amplifier design guidelines,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 3, pp. 268–275, Mar. 1984.
    [19] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A fully integrated 0.5–5.5-GHz CMOS distributed amplifier,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 231–239, Feb. 2000.
    [20] H.-T. Ahn and D. J. Allstot, “A 0.5–8.5-GHz fully differential CMOS distributed amplifier,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 985–993, Aug. 2002.
    [21] C. S. Aitchison, “The intrinsic noise figure of the MESFET distributed amplifier,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 6, pp. 460–466, Jun. 1985.
    [22] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed amplification,” Proc. IRE, pp. 956–969, Aug. 1948.
    [23] A. Q. Safarian, A. Yazdi, and P. Heydari, “Design and analysis of an ultra wideband distributed CMOS mixer,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 5, pp. 618–629, May 2005.
    [24] H. Wu and A. Hajimiri, “Silicon-based distributed voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 493–502, Mar. 2001.
    [25] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2004.
    [26] Q. He and M. Feng, “Low-power, high-gain, and high-linearity SiGe BiCMOS wideband low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 956–959, Jun. 2004.
    [27] A. Yazdi, D. Lin, and P. Heydari, “A 1.8 V three-stage 25 GHz 3 dB-BW differential non-uniform downsized distributed amplifier,” in IEEE ISSCC Dig. Tech. Papers, 2005, pp. 156–157.
    [28] J.-S. Goo, H.-T. Ahn, D. J. Ladwig, Z. Yu, T. H. Lee, and R. W. Dutton,“A noise optimization technique for integrated low-noise amplifiers,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 994–1002, Aug. 2002.
    [29] R. C. Becker and J. B. Beyer, “On gain-bandwidth product for distributed amplifiers,” IEEE Trans. Microw. Theory Tech., vol. MTT-34, no. 6, pp. 736–738, Jun. 1986.
    [30] X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3278–3283, Aug. 2006.
    [31] C.-T. Fu and C.-N. Kuo, “3-11-GHz UWB LNA using dual feedback for broadband matching, ” in IEEE RFIC Symp. Dig. Papers, 2006, pp.67–70.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE