簡易檢索 / 詳目顯示

研究生: 曾昭文
Tzeng, Chao-Wen
論文名稱: 支援低功率測試與易診斷特性的掃瞄測試架構
Scan Architecture Supporting Low Power Test Compression and Easy Diagnosis
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 105
中文關鍵詞: 掃瞄測試測試壓縮低功率測試無線測試瑕疵診斷
外文關鍵詞: Scan Test, Test Compression, Low Power Test, Wireless Test, Defect Diagnosis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 掃瞄測試已經成為晶片測試中一種被廣泛應用的測試項目,但隨著晶片製造技術的提升,晶片本身的複雜度也日益提高,進而需要更大量的測試向量來進行測試以確保測試品質,而這卻意味著我們將需要更大量的掃瞄測試時間,及能乘載大量測試所需資料的測試機台,這都將大大的提高測試所需成本。因此,測試壓縮的技術 (Test Compression) 成為了掃瞄測試中不可或缺的設計。但是,在這些已開發的測試壓縮技術中,卻還有許多尚待解決的問題需要考慮,這其中包含了掃瞄測試過程中,會消耗過高功率的現象,此現象將影響晶片良率甚至對晶片早成永久性的傷害。此外,由於有線式傳統機台昂貴的價格及過高的測試成本等因素下,無線式的測試平台成了一個日益受到重視的測試方式,但是由於無線傳輸的速度限制,如何將需要大量資料傳輸的掃瞄測試方法應用到無線測試平台上成了無線測試的一個極需突破的瓶頸。而雖然壓縮技術可減少測試過程中對測試機台記憶體乘載量的需求,卻也造成我們無法取得完整的輸出端資料,此現象也將嚴重得影響瑕疵診斷的診斷結果。
    因此這促使我們開發出一個更全面的掃瞄測試壓縮架構,此架構將能夠滿足快速且低功率的測試要求,並且在診斷時能夠提供更有效率且準確度更高的測試結果。首先我們開發了一套『萬用型群體廣播式掃瞄鍊測試架構』(Universal Multicasting Scan Test),可以將測試時間的縮短倍數大幅提昇,並在此架構上,延伸出能兼具快速測試且低功率的測試技術 (Quick and Cool Scan Test)。此外,我們也提出如何將掃瞄測試方法應用到無線測試平台上。我們開發出更全面的壓縮技術來對測試資料進行壓縮,並同時兼顧測試與診斷的需求提出混合式輸出壓縮架構,使得掃瞄測試在無線測試平台上更有效率。而為了解決瑕疵診斷在測試壓縮環境下精確度過低的問題,我們提出一個掃瞄鍊分段隔離 (Split-Gating) 的架構,透過此架構,可解決在高壓縮倍率的需求下,瑕疵診斷精確度過低的問題。


    Scan test has been an indispensable test methodology for guaranteeing test quality in industry. However, as the designs become larger and larger, the cost of scan test has been skyrocketing as the test data volume grows prohibitively high and thus increasing the test time proportionally. At the same time, excessive test power consumption is causing yield loss during the scan test. Moreover, diagnosis quality has degraded significantly when test compression is in use. In addition, it is often desirable to port the scan test methodology to a low cost indirect-access test environment.
    Facing the above challenges, this thesis will focus on the development of comprehensive scan architecture so that it can meet the above stringent requirements, i.e., low-power test compression with good diagnostic capability while being portable to an indirect-access test environment. For test data volume reduction, we propose multicasting-based scan architecture named Universal Multicasting Scan (UMC-Scan). As compared to the most advanced multicasting-based architectures, the experimental results will demonstrate that the proposed architecture can significantly improve the test compression ratio. For reducing test power consumption, a post pattern generation flow named Quick-and-Cool X-fill (QC-Fill). The proposed X-fill method can properly utilize the don’t-care bits in the test patterns to simultaneously reduce the test power, while retaining high test compression ratio. For porting scan test to a wireless test platform, called HOY test platform, indirect-access scan architecture will be introduced to improve the test efficiency when scan test is adopted in an indirect-access test environment. Finally, for compensating the loss of diagnostic resolution resulting from output compaction, we propose an output masking scheme. The experimental results demonstrate the proposed scheme can recover the diagnostic resolution loss induced by an output compactor almost completely without sacrificing the compaction ratio.

    Chapter 1 Introduction 1 1.1 Problem of Interest 1 1.2 Thesis Organization 3 Chapter 2 Background 5 2.1 Test Compression Architecture 5 2.2 Low Power Test Compression Scheme 8 2.3 Scan Test in Indirect-Access Test Platform 11 2.4 Defect Diagnosis with Output Compaction 13 Chapter 3 Test Compression Architecture 15 3.1 Introduction 15 3.2 Universal Multicasting Scan Methodology 16 3.2.1 Compatibility Analysis 19 3.2.2 Control Pattern Reduction 20 3.2.3 Partial Data Reuse 24 3.3 Detailed UMC-Controller 26 3.4 Experimental Results 28 3.4.1 Test Compression Ratio 28 3.4.2 Comparison Results 30 3.4.3 Application to Multiple Test Channels 32 3.5 Summary 33 Chapter 4 X-Fill for Low Power Test Compression 34 4.1 Introduction 34 4.2 Basic Architecture and Power Metrics 35 4.2.1 Multicasting Scan Architecture 35 4.2.2 Basic Power Metrics 35 4.3 Proposed QC-Fill Scheme 36 4.3.1 Low-Power Driven Clique Partitioning 37 4.3.2 Multicasting-Driven X-Filling 40 4.3.3 Clique Stripping for Low Capture Power 43 4.3.4 Clique Stripping for Low Shifting Power 45 4.4 Experimental Results 47 4.4.1 Random-Fill vs. QC-Fill 48 4.4.2 Adjacent-Fill vs. QC-Fill 49 4.4.3 Preferred-Fill vs. QC-Fill 49 4.4.4 UMC-Scan vs. QC-Fill 50 4.4.5 Overall Comparison Summary 50 4.4.6 Qualitative Comparison 51 4.5 Summary 54 Chapter 5 Indirect-Access Scan Test Architecture 55 5.1 Introduction 55 5.2 Overview of HOY Platform 56 5.3 Indirect-Access Scan (iScan) Architecture 57 5.3.1 Test Data Compression 57 5.3.2 Packet Overhead Reduction 61 5.3.3 Output Response Compaction 63 5.4 Experimental Results 64 5.5 Summary 67 Chapter 6 Diagnosis with Output Compaction 68 6.1 Introduction 68 6.2 Preliminary 69 6.2.1 Basic Diagnostic Flow for Compound Defect 69 6.2.2 Challenge of Defect Diagnosis 71 6.3 Proposed Output Masking Scheme 76 6.3.1 Observation and Motivation 76 6.3.2 Proposed Split-Masking Scheme 77 6.3.3 Analysis of Area Overhead 80 6.3.4 Analysis of Control Data Overhead 81 6.4 Operations of Split-Masking Architecture 82 6.4.1 Observable/Non-Observable Logic Fault Effects 82 6.4.2 Dynamic Configuration for Output Compactor 84 6.4.3 Diagnosis for Multiple Faulty Chains 86 6.5 Experimental Results 88 6.5.1 Compound Defect Diagnosis 89 6.5.2 Chain Diagnosis with Unknown Effect 93 6.6 Summary 95 Chapter 7 Conclusion 96 Bibliography 98

    [1] A. Al-Yamani, E. Chmelar, and M. Grinchuck, “Segmented addressable scan architecture,” Proc. of VLSI Test Symp., pp. 405-411, May 2005.
    [2] A. Al-Yamani, N. Devta-Prasanna, E. Chmelar, and M. Grinchuk, “Scan test cost and power reduction through systematic scan reconfiguration,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 5, pp. 907-918, May 2007.
    [3] Y. Bonhomme, P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch, “A gated clock scheme for low power scan testing of logic ICs or embedded cores,” Proc. of IEEE Asian Test Symp., pp. 253-258, Nov. 2001.
    [4] C. W. Branson, “Integrating tester pin electronics,” IEEE Design and Test of Computers, vol. 7, no. 2, pp. 4-14, Apr. 1990.
    [5] K. M. Bulter, J. Saxena, T. Fryars, G. Hetherington, A. Jain, and J. Lewis, “Minimizing power consumption in scan test: pattern generation and DFT techniques,” Proc. of Int’l Test Conf., pp. 355-364, Oct. 2004.
    [6] A. Chandra and K. Chakrabarty, “Combining low-power scan testing and test data compression for system-on-a-chip,” Proc. of Design Automation Conf., pp. 166-169, June 2001.
    [7] A. Chandra and K. Chakrabarty, “A unified approach to reduce SoC test data volume, scan power and testing time,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 3, pp. 352-363, Mar. 2003.
    [8] A. Chandra, F. Ng, and R. Kapur, “Low power Illinois scan architecture for simultaneous power and test data volume reduction,” Proc. of Design, Automation and Test in Europe, pp. 462-467, Mar. 2008.
    [9] P.-K. Chen, Y.-T. Hsing, and C.-W. Wu, “On feasibility of HOY – a wireless test methodology for VLSI chips and wafers,” Proc. of Int’l Symp. on VLSI Design, Automation, and Test (VLSI-DAT), pp. 243-246, Apr. 2006.
    [10] B.-H. Chen, W.-C. Kao, B.-C. Bai, S.-T Shen, and J. C.-M. Li, “Response inversion scan cell (RISC): a peak capture power reduction technique,” Proc. of Asian Test Symp., pp. 425-432, Oct. 2007.
    [11] W.-T Cheng, K.-H. Tsai, Y. Huang, N. Tamarapalli, and J. Rajski, “Compactor independent direct diagnosis,” Proc. of Asian Test Symp., pp. 204-209, Nov. 2004.
    [12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,” McGraw-Hill, 1990.
    [13] D. Czysz, G. Mrugalski, J. Rajski, and J. Tyszer, “Low power embedded deterministic test,” Proc. of VLSI Test Symp., pp. 75-83, May 2007.
    [14] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer, “Low power scan shift and capture in the EDT environment,” Proc. of Int’l Test Conf., pp. 1-10, Oct. 2008.
    [15] P. Girard, “Survey of low-power testing of VLSI circuits,” IEEE Design and Test of Computers, vol. 19, no.3, pp. 80-90, May-June 2002.
    [16] S. W. Golomb, “Run-length Encodings,” IEEE Trans. on Information Theory, vol. 12, no. 3, July 1966.
    [17] R. Guo and S. Venkataraman, “A technique for fault diagnosis of defects in scan chains,” Proc. of Int’l Test Conf., pp. 268-277, Oct. 2001.
    [18] R. Guo, Y. Huang, and W.-T. Cheng, “A complete test set to diagnose scan chain failures,” Proc. of Int’l Test Conf., pp. 1-10, Oct. 2007.
    [19] Y. Han, X. Li, H. Li, and A. Chandra, “Test resource partitioning based on convolutional code,” Proc. of Asia and South Pacific Design Automation Conf., pp. 53-58, Jan. 2005.
    [20] A. Hertwig and H.-J. Wunderlich, “Low-Power serial built-in self test,” Proc. of European Test Workshop, pp. 49-53, May 1998.
    [21] Y. Huang, W.-T. Cheng, and J. Rajski, “Compressed pattern diagnosis for scan chain failures,” Proc. of Int’l Test Conf., pp. 744-751, Nov. 2005.
    [22] Y. Huang, W.-T. Cheng, N. Tamarapalli, J. Rajski, R Klingenberg, W. Hsu, and Y.-S. Chen, “Diagnosis with limited failure information,” Proc. of Int’l Test Conf., pp. 1-10, Oct. 2006.
    [23] Y. Huang, W.-T. Cheng, R. Guo, W. Hsu, Y.-S. Chen, and A. Man, “Diagnose compound scan chain and system logic defects,” Proc. of Int’l Test Conf., pp. 1-10, Oct. 2007.
    [24] I. Jamzaoglu and J. H. Patel, “Reducing test application time for full scan embedded cores,” Proc. of Int’l Symp. on Fault-Tolerant Computing, pp. 260-267, July 1999.
    [25] A. Jas, J. Ghosh-Dastidar, M. Ng, and N. A. Touba, “An efficient test vector compression scheme using selective huffman coding,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 6, pp. 797-806, June 2003.
    [26] B. Keller and T. Bartenstein, “Use of MISRs for compression and diagnostics,” Proc. of Int’l Test Conf., pp. 735-743, Nov. 2005.
    [27] C. V. Krishna, A. Jas, and N. A. Touba, “Reducing test data volume using LFSR reseeding with seed compression,” Proc. of Int’l Test Conf., pp. 321-330, Oct. 2002.
    [28] C. V. Krishna and N. A. Touba, “Adjustable width linear combinational scan vector decompressor,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 863-866, Sept. 2003.
    [29] K.-J. Lee, J.-J. Chen, and C.-H. Huang, “Using a single input to support multiple scan chains,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 74-78, Nov. 1998.
    [30] K.-J. Lee, T.-C. Huang, and J.-J Chen, “Peak-power reduction for multiple-scan circuits during test,” Proc. of Asian Test Symp., pp. 453-458, Dec. 2000.
    [31] K.-J. Lee, S.-J. Hsu, and C.-M. Ho, “Test power reduction with multiple capture order,” Proc. of Asian Test Symp., pp. 26-31, Nov. 2004.
    [32] A. Leininger, P. Muhmenthaler, W.-T. Cheng, N. Tamarapalli, W. Yang, and H. Tsai, “Compression mode diagnosis enables high volume monitoring diagnosis flow,” Proc. of Int’l Test Conf., pp. 156-165, Nov. 2005.
    [33] J. C.-M. Li, H.-M. Lin, and F.-M. Wang, “Column parity row selection (CPRS) BIST diagnosis technique: modeling and analysis,” IEEE Trans. on Computers, vol. 56, no. 3, pp. 402-414, Mar. 2007.
    [34] J. Li, X. Liu, Y. Zhang, Y. Hu, X. Li, and Q. Xu, “On capture power-aware test data compression for scan-based testing,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 67-72, Nov. 2008.
    [35] S.-P. Lin, C.-L Lee, J.-E. Chen, K.-L. Luo, and W.-C. Wu, “A multilayer data copy test data compression scheme for reducing shifting-in power for multiple scan design,” IEEE Trans. on Very Large Scale Integration (VLSI) System, vol. 15, no. 7, pp. 767-776, July 2007.
    [36] Y.-T. Lin, M.-F. Wu, and J.-L. Huang, “PHS-fill: a low power supply noise test pattern generation technique for at-speed testing in Huffman coding test compression environment,” Proc. of Asian Test Symp., pp. 391-396, Nov. 2008.
    [37] S. Mitra and K. S. Kim, “X-compact: an efficient response compaction technique,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 3, pp. 421-432, Mar. 2004.
    [38] G. Mrugalski, J. Rajski, D. Czysz, and J. Tyszer, “New test data decompressor for low power applications,” Proc. of Design Automation Conf., pp. 539-544, June 2007.
    [39] G. Mrugalski, A. Pogiel, J. Rajski, J. Tyszer, and C. Wang, “Fault diagnosis with convolutional compactors,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 8, pp. 1478-1494, Aug. 2007.
    [40] M. Nahvi and A. Ivanov, “Indirect test architecture for SoC testing,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 7, pp. 1128-1142, July 2004.
    [41] M. Naruse, I. Pomeranz, S. M. Reddy, and S. Kundu, “On-chip compression of output responses with unknown values using LFSR reseeding,” Proc. of Int’l Test Conf., pp. 1060-1068, Oct. 2003.
    [42] M. Nourani and M. Tehranipour, “RL-huffman encoding for test compression and power reduction in scan applications,” ACM Trans. on Design Automation of Electronic Systems, vol. 10, no. 1, pp. 91-115, Jan. 2005.
    [43] J. Rajski, J. Tyszer, C. Wang, and S. Reddy, “Convolutional compaction of test responses,” Proc. of Int’l Test Conf., pp. 745-754, Oct. 2003.
    [44] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherje, “Embedded deterministic test,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 5, pp. 776-792, May 2004.
    [45] S. Remersaro, X. Lin, Z. Zhang, S. M. Reddy, I. Pomeranz, and J. Rajski, “Preferred fill: a scalable method to reduce capture power for scan based designs,” Proc. of Int’l Test Conf., pp. 1-10, Oct. 2006.
    [46] T. Rockoff, “The rise and fall of the ATE industry,” Proc. of Int’l Test Conf., pp. 1154-1179, Oct. 1998.
    [47] P. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan architecture with mutually exclusive scan segment activation for shift- and capture-power reduction,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 7, pp. 1142-1153, July 2004.
    [48] R. Sankaralingam, R. R. Oruganti, and N. A. Touba, “Static compaction technique to control scan vector power dissipation,” Proc. of VLSI Test Symp., pp. 35-40, May 2000.
    [49] R. Sankaralingam, B. Pouya, and N. A. Touba, “Reducing power dissipation during test using scan chain disable,” Proc. of VLSI Test Symp., pp. 319-324, Apr. 2001.
    [50] R. Sankaralingam and N. A. Touba, “Controlling peak power during scan testing,” Proc. of VLSI Test Symp., pp. 153-159, May 2002.
    [51] J. Saxena, K. M. Butler, and L. Whetsel, “An analysis of power reduction techniques in scan testing,” Proc. of Int’l Test Conf., pp. 670-677, Sept. 2001.
    [52] N. Sitchinava, S. Samaranayake, R. Kapur, E. Gizdarski, F. Neuveux, and T. W. Williams, “Changing the scan enable during shift,” Proc. of VLSI Test Symp., pp. 73-78, Apr. 2004.
    [53] Y. Tang, H.-J. Wunderlich, P. Engelke, I. Polian, B. Becker, J. Schloffel, F. Hapke, and M. Wittke, “X-masking during logic BIST and its impact on defect coverage,” Proc. of Int’l Test Conf., pp. 442-451, Oct. 2004.
    [54] M. H. Tehranipour, M. Nourani, and K. Chakarbarty, “Nine-coded compression technique with application to reduced pin-count testing and flexible on-chip decompression,” Proc. of Design, Automation and Test in Europe, pp. 1284-1289, Feb. 2004.
    [55] P.-C. Tsai and S.-J. Wang, “Multi-mode segmented scan architecture with layout-aware scan chain routing for test data and test time reduction,” Proc. of Asian Test Symp., pp. 225-230, Nov. 2006.
    [56] C.-W. Tzeng and S.-Y. Huang, “UMC-scan test methodology: exploiting the maximum freedom of multicasting,” IEEE Design and Test of Computers, vol. 25, no. 2, pp. 132-140, Mar.-Apr., 2008.
    [57] C.-W. Tzeng and S.-Y. Huang, “Two-gear lower-power scan test,” Proc. of Asian Test Symp., pp. 337-342, Nov. 2008.
    [58] C.-W. Tzeng and S.-Y. Huang, “QC-fill: an x-fill method for quick-and-cool scan test,” Proc. of Design, Automation and Test in Europe, pp. 1142-1147, Apr. 2009.
    [59] L.-T. Wang, X. Wen, H. Furukawa, F.-S. Hsu, S.-H. Lin, S.-W. Tsai, K. S. Abdel-Hafez, and S. Wu, “VirtualScan: a new compressed scan technology for test cost reduction,” Proc. of Int’l Test Conf., pp. 916-925, Oct. 2004.
    [60] L.-T. Wang, C.-W. Wu, and X. Wen, “Design for Testability: VLSI Test Principles and Architectures,” Elsevier (Morgan Kaufmann), 2006.
    [61] C. Wang, S. M. Reddy, I. Pomeranz, J. Rajski, and J. Tyszer, “On compacting test response data containing unknown values,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 855-862, Nov. 2003.
    [62] S. Wang, K. J. Balakrishnan, and S. T. Chakradhar, “Efficient unknown blocking using LFSR reseeding,” Proc. of Design, Automation and Test in Europe, pp. 320-325, Mar. 2006.
    [63] S. Wang, K. J. Balakrishnan, and W. Wei, “X-block: an efficient LFSR reseeding-based method to block unknowns for temporal compactors,” IEEE Trans. on Computer, vol. 57, no. 7, pp. 978-989, July 2008.
    [64] S.-J. Wang, Y.-T. Chen, and S.-M. Li, “Low capture power test generation for launch-off-capture transition test based on don’t-care filling,” Proc. of Int’l Symp. on Circuits and Systems, pp. 27-30, May 2007.
    [65] X. Wen, Y. Yamashita, S. Kajihara, L.-T. Wang, K. K. Saluja, and L. Kinoshita, “On low-capture-power test generation for scan testing,” Proc. of VLSI Test Symp., pp. 265-270, Nov. 2005.
    [66] X. Wen, Y. Yamashita, S. Morishima, S. Kajihara, L.-T. Wang, K. K. Saluja, and K. Kinoshita, “Low-capture-power test generation for scan-based at-speed testing,” Proc. of Int’l Test Conf., pp. 1019-1028, Nov. 2005.
    [67] C.-W. Wu, C.-T. Huang, S.-Y. Huang, P.-C. Huang, T.-Y. Chang, and Y.-T. Hsing, “The HOY tester – can IC testing go wireless?” Proc. of Int’l Symp. on VLSI Design, Automation, and Test, pp. 183-186, Apr. 2006.
    [68] M.-F. Wu, J.-L. Huang, X. Wen, and K. Miyase, “Reducing power supply noise in linear-decompressor-based test data compression environment for at-speed scan testing,” Proc. of Int’l Test Conf., pp. 1-10, Oct. 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE