研究生: |
李宣萱 Lee, Hsuan-Hsuan |
---|---|
論文名稱: |
長的非編碼核糖核酸AABR07056156.1 (Lnc156) 促進皮質神經細胞的再生 Long non-coding RNA AABR07056156.1 (Lnc156) promotes regeneration of cortical neurons |
指導教授: |
陳令儀
Chen, Linyi |
口試委員: |
張壯榮
Chang, Chuang-Rung 黄兆祺 Hwang, Eric |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 再生 、長的非編碼核醣核酸 、中樞神經 、皮質神經細胞 |
外文關鍵詞: | central nervous system, cortical neurons, HES5 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在哺乳動物中,中樞神經系統損傷後無法自發地再生,是由於抑制性的外在環境以及隨著神經細胞發育而衰退的內在生長能力。因此,促進受損中樞神經細胞再生仍然是一大挑戰。透過了解神經再生過程的機制,有助於提供中樞神經再生的臨床治療。在本篇研究中,我們使用18天大的胚胎大鼠皮質神經細胞作為我們的研究細胞模式。我們發現在皮質神經細胞受傷後的再生期間, lncRNA-AABR07056156.1(簡稱Lnc156)表現量增加。Lnc156 的大量表現不僅顯著增進神經軸突生長,而且明顯促進神經再生; knockdown Lnc156 則會抑制受傷的神經軸突再生。為了進一步研究 Lnc156 在神經再生過程中的調控機制,我們預測並分析 Lnc156 與 miRNA 或蛋白質或 mRNA 之間相互作用的潛力。我們發現,HES5 mRNA 有較高的可能性與 Lnc156 轉錄物相互作用。除此之外,Lnc156 的大量表達降低了 HES5 的表現量,而目前已知 HES5 會抑制神經軸突的生長。綜合我們的結果,由於 Lnc156 在受損的皮質神經細胞再生過程中表現量上升,可能表現量增加使Lnc156 轉錄物與HES5 mRNA 結合,導致 HES5 mRNA 被降解進而促進神經的再生。
In mammalian system, the central nervous system (CNS) does not spontaneously regenerate after injury due to the inhibitory extrinsic microenvironment as well as developmentally declined intrinsic growth ability of neurons. Thus, overcoming the limited regeneration capacity of CNS neurons remains challenging. Better understanding of the mechanisms underlying neuronal regeneration should provide insight into the potential treatment for neuronal injury. In this study, we used cortical neurons from embryonic day 18 (E18) rat as our models and found that the expression level of a long non-coding RNA (lncRNA), AABR07056156.1 (Lnc156) was increased during regeneration. Overexpression of Lnc156 not only significantly increases neurite outgrowth but also promotes neuronal regeneration. On the other hand, knockdown of Lnc156 inhibits neurite re-growth. To further clarify the regulatory role of Lnc156 during regeneration, we predicted and analyzed the potential interaction between Lnc156 and miRNA/protein/mRNA. Our results indicate that HES5 mRNA is likely to interact with Lnc156 transcript. Moreover, overexpression of Lnc156 decreased the expression level of HES5. HES5 is known to play an inhibitory role on neurite outgrowth. Together, these findings showed that the expression of Lnc156 was increased during regeneration of injured cortical neurons and Lnc156 transcript may interact with HES5 mRNA to reduce the level of HES5 and thus promote neuronal regeneration.
1. Shih, C.C., et al., Decreased risk of stroke in patients with traumatic brain injury receiving acupuncture treatment: a population-based retrospective cohort study. PLoS One, 2014. 9(2): p. e89208.
2. Liao, C.C., et al., Risk and outcomes for traumatic brain injury in patients with mental disorders. J Neurol Neurosurg Psychiatry, 2012. 83(12): p. 1186-92.
3. Wu, H., et al., Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma, 2008. 25(2): p. 130-9.
4. Engberg, A.W., A Danish national strategy for treatment and rehabilitation after acquired brain injury. J Head Trauma Rehabil, 2007. 22(4): p. 221-8.
5. Nagoshi, N., et al., Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia, 2011. 59(5): p. 771-84.
6. Cheng, Q., et al., Critical signaling pathways during Wallerian degeneration of peripheral nerve. Neural Regen Res, 2017. 12(6): p. 995-1002.
7. Hirata, K., et al., Differential response of macrophage subpopulations to myelin degradation in the injured rat sciatic nerve. J Neurocytol, 1999. 28(8): p. 685-95.
8. Hung, H.A., et al., Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J Biol Chem, 2015. 290(11): p. 6937-50.
9. Brosius Lutz, A. and B.A. Barres, Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell, 2014. 28(1): p. 7-17.
10. Kim, H.A., T. Mindos, and D.B. Parkinson, Plastic fantastic: Schwann cells and repair of the peripheral nervous system. Stem Cells Transl Med, 2013. 2(8): p. 553-7.
11. Mandolesi, G., et al., Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J, 2004. 18(15): p. 1934-6.
12. Abe, N. and V. Cavalli, Nerve injury signaling. Curr Opin Neurobiol, 2008. 18(3): p. 276-83.
13. Allodi, I., E. Udina, and X. Navarro, Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol, 2012. 98(1): p. 16-37.
14. Sun, F. and Z. He, Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol, 2010. 20(4): p. 510-8.
15. Mar, F.M., A. Bonni, and M.M. Sousa, Cell intrinsic control of axon regeneration. EMBO Rep, 2014. 15(3): p. 254-63.
16. Filbin, M.T., PirB, a second receptor for the myelin inhibitors of axonal regeneration Nogo66, MAG, and OMgp: implications for regeneration in vivo. Neuron, 2008. 60(5): p. 740-2.
17. Geoffroy, C.G. and B. Zheng, Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol, 2014. 27: p. 31-8.
18. Sun, D., et al., Structural remodeling of fibrous astrocytes after axonal injury. J Neurosci, 2010. 30(42): p. 14008-19.
19. Oohira, A., F. Matsui, and R. Katoh-Semba, Inhibitory effects of brain chondroitin sulfate proteoglycans on neurite outgrowth from PC12D cells. J Neurosci, 1991. 11(3): p. 822-7.
20. Silver, J. and J.H. Miller, Regeneration beyond the glial scar. Nat Rev Neurosci, 2004. 5(2): p. 146-56.
21. Lee, K.B., et al., Recovery of CNS pathway innervating the sciatic nerve following transplantation of human neural stem cells in rat spinal cord injury. Cell Mol Neurobiol, 2012. 32(1): p. 149-57.
22. Ma, T.C. and D.E. Willis, What makes a RAG regeneration associated? Front Mol Neurosci, 2015. 8: p. 43.
23. Eva, R. and J. Fawcett, Integrin signalling and traffic during axon growth and regeneration. Curr Opin Neurobiol, 2014. 27: p. 179-85.
24. Raivich, G., et al., The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron, 2004. 43(1): p. 57-67.
25. Emery, B., et al., Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. Proc Natl Acad Sci U S A, 2006. 103(20): p. 7859-64.
26. Tsujino, H., et al., Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci, 2000. 15(2): p. 170-82.
27. Tanabe, K., et al., Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci, 2003. 23(29): p. 9675-86.
28. Nadeau, S., et al., A transcriptional role for C/EBP beta in the neuronal response to axonal injury. Mol Cell Neurosci, 2005. 29(4): p. 525-35.
29. MacGillavry, H.D., et al., NFIL3 and cAMP response element-binding protein form a transcriptional feedforward loop that controls neuronal regeneration-associated gene expression. J Neurosci, 2009. 29(49): p. 15542-50.
30. Konishi, Y., et al., Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science, 2004. 303(5660): p. 1026-30.
31. Iavarone, A. and A. Lasorella, ID proteins as targets in cancer and tools in neurobiology. Trends Mol Med, 2006. 12(12): p. 588-94.
32. Stegmuller, J., et al., Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron, 2006. 50(3): p. 389-400.
33. Yang, Y., A.H. Kim, and A. Bonni, The dynamic ubiquitin ligase duo: Cdh1-APC and Cdc20-APC regulate neuronal morphogenesis and connectivity. Curr Opin Neurobiol, 2010. 20(1): p. 92-9.
34. Belin, S., et al., Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron, 2015. 86(4): p. 1000-1014.
35. Williams, A.H., et al., MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science, 2009. 326(5959): p. 1549-54.
36. Qureshi, I.A. and M.F. Mehler, Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci, 2012. 13(8): p. 528-41.
37. Qureshi, I.A. and M.F. Mehler, Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics, 2013. 10(4): p. 632-46.
38. Chodroff, R.A., et al., Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol, 2010. 11(7): p. R72.
39. Sana, J., et al., Novel classes of non-coding RNAs and cancer. J Transl Med, 2012. 10: p. 103.
40. David, R., Small RNAs: miRNA machinery disposal. Nat Rev Mol Cell Biol, 2013. 14(1): p. 4-5.
41. Liao, Q., et al., Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res, 2011. 39(9): p. 3864-78.
42. Zhang, H., et al., Long non-coding RNA: a new player in cancer. J Hematol Oncol, 2013. 6: p. 37.
43. Wu, Z., et al., Regulation of lncRNA expression. Cell Mol Biol Lett, 2014. 19(4): p. 561-75.
44. Ng, S.Y., R. Johnson, and L.W. Stanton, Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J, 2012. 31(3): p. 522-33.
45. Zhang, Y., L. Yang, and L.L. Chen, Life without A tail: new formats of long noncoding RNAs. Int J Biochem Cell Biol, 2014. 54: p. 338-49.
46. Derrien, T., et al., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 2012. 22(9): p. 1775-89.
47. Marques, A.C. and C.P. Ponting, Intergenic lncRNAs and the evolution of gene expression. Curr Opin Genet Dev, 2014. 27: p. 48-53.
48. Phelps, M., et al., Registered report: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Elife, 2016. 5.
49. Kapusta, A., et al., Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet, 2013. 9(4): p. e1003470.
50. Carninci, P., et al., The transcriptional landscape of the mammalian genome. Science, 2005. 309(5740): p. 1559-63.
51. Wang, K.C., et al., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011. 472(7341): p. 120-4.
52. Tsai, M.C., et al., Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010. 329(5992): p. 689-93.
53. Wang, P., et al., The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science, 2014. 344(6181): p. 310-3.
54. Jiang, W., et al., The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep, 2015. 11(1): p. 137-48.
55. Tripathi, V., et al., Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 2013. 9(3): p. e1003368.
56. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14.
57. Lee, S., et al., Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell, 2016. 164(1-2): p. 69-80.
58. Ebert, M.S. and P.A. Sharp, Emerging roles for natural microRNA sponges. Curr Biol, 2010. 20(19): p. R858-61.
59. Yoon, J.H., K. Abdelmohsen, and M. Gorospe, Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol, 2013. 425(19): p. 3723-30.
60. Gao, Y., et al., LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet, 2015. 24(3): p. 841-52.
61. Willingham, A.T., et al., A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 2005. 309(5740): p. 1570-3.
62. Lipovich, L., et al., Developmental changes in the transcriptome of human cerebral cortex tissue: long noncoding RNA transcripts. Cereb Cortex, 2014. 24(6): p. 1451-9.
63. Knauss, J.L. and T. Sun, Regulatory mechanisms of long noncoding RNAs in vertebrate central nervous system development and function. Neuroscience, 2013. 235: p. 200-14.
64. Wang, Y., et al., Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder. Transl Psychiatry, 2015. 5: p. e660.
65. Ng, S.Y., et al., The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell, 2013. 51(3): p. 349-59.
66. Lin, N., et al., An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell, 2014. 53(6): p. 1005-19.
67. Aprea, J. and F. Calegari, Long non-coding RNAs in corticogenesis: deciphering the non-coding code of the brain. EMBO J, 2015. 34(23): p. 2865-84.
68. Ramos, A.D., et al., The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell, 2015. 16(4): p. 439-447.
69. Rani, N., et al., A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA. Neuron, 2016. 90(6): p. 1174-1188.
70. Modarresi, F., et al., Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol, 2012. 30(5): p. 453-9.
71. Faghihi, M.A. and C. Wahlestedt, Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol, 2009. 10(9): p. 637-43.
72. Zhao, X., et al., A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci, 2013. 16(8): p. 1024-31.
73. Maeda, Y., et al., Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo. J Cell Biochem, 2004. 93(2): p. 337-44.
74. Akazawa, C., et al., Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem, 1992. 267(30): p. 21879-85.
75. Tanigaki, K., et al., Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron, 2001. 29(1): p. 45-55.
76. Kageyama, R., T. Ohtsuka, and T. Kobayashi, Roles of Hes genes in neural development. Dev Growth Differ, 2008. 50 Suppl 1: p. S97-103.
77. Bansod, S., R. Kageyama, and T. Ohtsuka, Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development. Development, 2017. 144(17): p. 3156-3167.
78. Chiaramello, A., et al., The GAP-43 gene is a direct downstream target of the basic helix-loop-helix transcription factors. J Biol Chem, 1996. 271(36): p. 22035-43.
79. Kramer, M.F., Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol, 2011. Chapter 15: p. Unit 15 10.
80. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
81. Rinn, J.L. and H.Y. Chang, Genome regulation by long noncoding RNAs. Annu Rev Biochem, 2012. 81: p. 145-66.
82. Ulitsky, I. and D.P. Bartel, lincRNAs: genomics, evolution, and mechanisms. Cell, 2013. 154(1): p. 26-46.
83. Dykes, I.M. and C. Emanueli, Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics Proteomics Bioinformatics, 2017. 15(3): p. 177-186.
84. Szczesniak, M.W. and I. Makalowska, lncRNA-RNA Interactions across the Human Transcriptome. PLoS One, 2016. 11(3): p. e0150353.
85. Calo, E. and J. Wysocka, Modification of enhancer chromatin: what, how, and why? Mol Cell, 2013. 49(5): p. 825-37.
86. Hatakeyama, J., et al., Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development, 2004. 131(22): p. 5539-50.
87. Kageyama, R., et al., Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res, 2005. 306(2): p. 343-8.
88. Kageyama, R. and T. Ohtsuka, The Notch-Hes pathway in mammalian neural development. Cell Res, 1999. 9(3): p. 179-88.
89. Tomita, K., et al., Mash1 promotes neuronal differentiation in the retina. Genes Cells, 1996. 1(8): p. 765-74.
90. Johnson, J.E., S.J. Birren, and D.J. Anderson, Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature, 1990. 346(6287): p. 858-61.
91. Castro, D.S., et al., A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev, 2011. 25(9): p. 930-45.
92. Williams, R.R., et al., MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS. PLoS One, 2015. 10(3): p. e0118918.
93. Perrin, F.E., et al., Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury. PLoS One, 2010. 5(12): p. e15914.
94. Cherry, T.J., et al., NeuroD factors regulate cell fate and neurite stratification in the developing retina. J Neurosci, 2011. 31(20): p. 7365-79.
95. Rashid, F., A. Shah, and G. Shan, Long Non-coding RNAs in the Cytoplasm. Genomics Proteomics Bioinformatics, 2016. 14(2): p. 73-80.