研究生: |
周宏興 Hung-Hsing, Chou |
---|---|
論文名稱: |
以藍光聚芴高分子衍生物為主體材料之高效率白光有機發光二極體 Efficient White Organic Light-Emitting Diodes Using Blue-emitting Polyfluorene Derivative |
指導教授: |
周卓煇
Jwo-Huei, Jou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 有機電致發光二極體 、白光 、溶液製程 、聚芴 |
外文關鍵詞: | Organic Light-Emitting Diodes, white light, solution-processed, Polyfluorene |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種以溶液製程製作之單一發光層白光有機電致發光二極體 (White Organic Light-Emitting Diodes, WOLEDs),此白光發光層是將紅光染料4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetra- methyljulolidyl-9-enyl) 4H-pyran (DCJTB) 及綠光染料 10- (2-benzo- thiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzo-pyropyrano(6,7-8-i,j)quinolizin-11-one (C545T),以溶劑溶解摻混於一可發藍光之主體材料poly [(9,9-dioctylfluo-renyl-2,7-diyl)-alt-co-(9-hexyl- 3,6-carbazole)] (PF-9HK)經旋塗乾燥後而得。
首先,製備以PF-9HK為發光材料的高分子藍光二極體,所得結果,是以7 mg/mL的濃度為最佳,元件最大發光亮度與效率分別為7,240 cd/m2與1.14 lm/W,故本研究的白光有機二極體都將以此藍光濃度來摻混小分子染料。
接著,在PF-9HK中加入一高效率紅光發光小分子染料 DCJTB,由於DCJTB的紫外光吸收光譜與PF-9HK的光致發光光譜有良好的重疊,表DCJTB可藉由能量轉移自PF-9HK吸收激態能量來發出紅光,所得之雙波段白光有機二極體具一CIE色座標為(0.349, 0.335)之純白光色;其最大發光效率與亮度分別為1.44 lm/W與5,700 cd/m2;當發光亮度由100 cd/m2增加至最大亮度時,其CIE色座標從(0.356 , 0.343)藍移至(0.305 , 0.281)。
最後,再加入一高效率綠光發光小分子染料C545T,此三波段白光有機二極體元件結構為 indium tin oxide/poly (3,4-ethyl- enedioxythiophene): poly (styrenesu-onate)/PF-9HK:C545T:DCJTB /bis-(2-methyl-8-quinolin-olate)-4-(phenylphenolato)alu-minum/tris (8- hydroxy-quinoline)aluminum/lithium-fluoride/aluminum,所得白光之Commission Internationale de l’Eclairage 座標為(0.340, 0.352)的純白光色,在7 V電壓下,最大發光效率為2.8 lm/W,最大發光亮度為8,710 cd/m2。
此元件之高發光效能,可歸因於,藍光主體PF-9HK優異之載子注入及傳輸能力,增進了載子覆合及激子形成效率所致;本研究之白光發光層乃以簡易之物理方法摻混,形成一混合均勻之發光層,而無需複雜之化學摻混,乃提供了一更簡易製備白光元件之方法。
1. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lette. 51, 913 (1987).
2. J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, Science 273, 884 (1996).
3. A. Dodabalapur, Solid State Commun 102, 259 (1997).
4. C. Adachi, T. Tsutsui ,and S. Saito, Jpn. J. Appl. Phys. 27, L269 (1988).
5. P. E. Burrows and S.R. Forrest, Appl. Phys. Lett. 64, 2285 (1994).
6. C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, Synth. Met. 91, 3 (1997).
7. P. E. Burrows, G. GU. V. Bulovic, Z. Shen, S.R. Forest, and M. E. Thompson, IEEE Trans. Electron Devices 44, 1188 (1997).
8. B. W. D’Andrade and S. R. Forrest, Adv. Mater. 16, 1585 (2004).
9. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Breach, New York 335 (1997).
10. Z. Zhang, X. Jiang, and S. Xu, Thin Soild Films. 363, 61 (2000).
11. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 65, 815 (1994).
12. B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, Adv. Mater. 16, 624 (2004).
13. J. H. Burroughes, D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990).
14. M. Suzuki, S. Tokito, M. Kamachi, K. Shirane, and F. Sato, J. photopolymer Science and Technology 16, 309 (2003).
15. G. K. Ho, H. F. Meng, S. C. Lin, S. F. Horng, C. S. Hsu, L. C. Chen, and S. M. Chang, Appl. Phys. Lett. 85, 4576 (2004).
16. G. Tu, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, and F. Wang, Appl. Phys. Lett. 85, 2172 (2004).
17. X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, and A. J. Heeger, Adv. Mater. 16, 615 (2004).
18. P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 38, 2042 (1963).
19. R. H. Patridge, Polymer 24, 733 (1983).
20. S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Pat. No.4, 720, 432 (1988).
21. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
22. R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Pat. No. 5, 247, 190 (1993).
23. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 27, L713 (1988).
24. M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 178, 488 (1991).
25. J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
26. J. Kido, M. Kimura, K. Nagai, Science 267, 1332 (1995).
27. J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett. 67, 2281 (1995).
28. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999)
29. A. Dodabalapur, Bell Lab., Solid State Com. 102, 259 (1997).
30. T. Forster, Discuss. Faraday Soc. 27, 7 (1959)
31. D. Dexter, J. Chem. Phys. 21,836(1953)
32. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 1 (1997).
33. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 83, 4928 (1998).
34. M. A. Lampert, P. Mark, Current Injection in Solids, New York, Academic Press (1970).
35. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 8 (1997).
36. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 9 (1997).
37. J. Yang, J. Shen, J. Appl. Phys. 84, 2105 (1998).
38. Z. Liu, J. Pinto, J. Soaves, E. Pereira, Synth. Metals 122, 177 (2001).
39. K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 10, 1017 (1998).
40. S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
41. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata, Z. H. Kafafi, Appl. Phys. Lett. 75, 766 (1999).
42. C. Giebeler, H. Antoniadis, D. D. C. Bradley, Y. Shirota, J. Appl. Phys. 85, 608 (1999).
43. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 64, 815 (1994).
44. L. Do, E. Ham, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq.Cryst. 280, 373 (1993).
45. C. Hosokawa, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).
46. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 63, 2627 (1993).
47. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 64, 815 (1994).
48. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
49. K. Chondroudis and D. B. Mitzi, Appl. Phys. Lett. 69, 58 (2000).
50. Y. Sato, S. Ichinosawa, H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics 4, 40 (1998).
51. Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, and K.Shibata, Appl. Phys. Lett. 71, 23 (1997).
52. D. G. Ma, G. Wang, Y. F. Hu, Y. G. Zhang, L. X. Wang, X. B. Jing, and F. S. Wang, Appl. Phys. Lett. 82, 8 (2003).
53. H. Shirakawa, Polymer Journal 2(2), 231 (1971).
54. Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys. 77 (2), 15 (1995).
55. Peter K. H. Ho, Magnus Granstrom, Richard H. Friend, and Neil C. Greenham, Adv. Mater., 10, 769 (1998)
56. W. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan, and A. J. Heeger, Adv. Mater. 17, 3 (2005).
57. B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, Adv. Mater. 16, 624 (2004).
58. J. H. Kim, P. Herguth, M. S. Kang, Alex K. Y. Jen, Y. H. Tseng and C. F. Shu, Appl. Phys. Lett. 85, 1116 (2004).
59. S. Naka, K. Shinno, and H. Anada, Electron. Trans. IEICE. 80, 1114 (1997).
60. G. Leising, S. Tasch; C. Brandstatter, W. Graupner, S. Hampel, E. J. W. List, F. Meghdadi, C. Zenz, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, K. Mullen, Synth. Metals. 91, 41 (1997).
61. R. W. T. Higgins, A. P. Monkman, H. G. Nothofer, and U. Scherf, Appl. Phys. Lett. 79, 6 (2001).
62. F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl. Phys. Lett. 83, 4716 (2003).
63. Y. Duan, Y. Zhao, G. Cheng, W. Jiang, J. Li, Z. Wu, J. Y. Hou, and S. Y. Liu, Semicond. Sci. Technol. 19, L32-L34 (2004).
64. M. Suzuki, S. Tokito, M. Kamachi, K. Suirane and F. Sato, J. Photopolymer Science and Technology. 16, 309 (2003).
65. X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses and A. J. Heeger, Adv. Mater. 16, 615 (2004).
66. H. A. A. Attar, A. P. Monkman, M. Tavasli, S. Bettington and M. R. Bryce, Appl. Phys. Lett. 86, 121101 (2005).
67. S. R. Forrest, R. S. Desphande, and V. Bulovic, Appl. Phys. Lett. 75, 888 (1999).
68. Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 80, 2782 (2002).
69. Y. Xu, J. Peng, Y. Mo, Q. Hou and Y. Cao Appl. Phys. Lett. 86, 163502 (2005).
70. J. Kido, Organic Electroluminescence Material and Display, Japan, chap17 (2001).
71. J. Kido, Organic Electroluminescence Material and Display, Japan, chap23 (2001).
72. G. Li, and J. Shinar, Appl. Phys. Lett. 83, 5359 (2003).
73. S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 83, 2459 (2003).
74. G. Cheng, Y. Zhao, Y. Zhang, S. Liu, F. He, H. Zhang, and Y. Ma, Appl. Phys. Lett. 84, 4457 (2004).
75. V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G.Kozlov, M. E. Thompson, and S. R. Forrest, Chem. Phys. Lett. 287, 455 (1998).
76. V. Bulovic, R. Deshpande, M. E. Thompson, and S. R. Forrest, Chem. Phys. Lett. 308, 317 (1999).
77. Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, (1986).
78. C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, Thin Solid Films 363, 327 (2000).
79. V. Bulovic, Organic Optoelectronics, Lecture 17.(2003)