簡易檢索 / 詳目顯示

研究生: 劉宜臻
Liu, Yi-Jhen
論文名稱: 設計非周期性准相位匹配光柵以達成非等間距之多波長轉換
Design of aperiodic quasi-phase matched grating for unequally-spaced multi-channel wavelength conversion
指導教授: 楊尚達
Yang, Shang-Da
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 74
中文關鍵詞: 准相位匹配
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用基因演算法以求得Non-periodic optical superlattice(NOS)晶體極化反轉點所發生的位置,分別設計等高之相位匹配雙峰設計、等高且不等間距之相位匹配三峰設計、等高且等間距相位匹配四峰設計、V型且等間距相位匹配五峰設計、和等高等間距相位匹配八峰設計,並且探討製程誤差及溫度不均勻分布對匹配頻譜的影響、高轉換效率時匹配頻譜的改變,且和現有的幾種准相位匹配技術做比較。


    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 簡介與動機 1 1.2 內容摘要 2 第二章 相位匹配理論及准相位匹配元件設計 3 2.1相位匹配理論 3 2.2准相位匹配元件設計 9 2.2.1 Phase reversal sequence (PRS) 9 2.2.2 Dammann grating 11 2.2.3 Aperiodic Optical Superlattice (AOS) 13 2.2.4 Nonperiodic optical superlattice (NOS) 14 2.3基因演算法 16 2.3.1 產生最初的族群(population) 16 2.3.2 編碼 17 2.3.3 選擇(selection) 18 2.3.4 交配(crossover) 20 2.3.5 突變(mutation) 22 2.3.6 將產生的子代放入新世代中(Reinsertion) 24 2.3.7 遷移(migration) 24 2.4 高轉換效率的影響 27 第三章 模擬結果 29 3.1 相位匹配多峰之設計 29 3.1.1 等高之相位匹配雙峰 29 3.1.2等高、不等間距之相位匹配三峰 32 3.1.3等高、等間距之相位匹配四峰 37 3.1.4 V形、等間距相位匹配五峰 41 3.1.5等高、等間距相位匹配八峰 45 3.2製程誤差及晶體溫度不均勻之影響 49 3.2.1製程誤差之影響 49 3.2.2 晶體溫度不均勻之影響 52 3.3高轉換效率之影響 58 3.4與現有設計方法之比較 65 3.4.1 Dammann grating 65 3.4.2 以模擬退火法設計aperiodic optical superalttice (AOS) 68 第四章 結論與展望 71 參考文獻 73

    1. J. Webjorn, V. Pruneri, P. S. J. Russell, J. R. M. Barr, D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett., 30, 894-895, (1994).
    2. S. M. Gao, C. X. Yang, X. S. Xiao, Y. Tian, Z. You, and G. F. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” Journal of lightwave tech. Lett., 25, 710-718, (2007).
    3. Masaki Asobe, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Optics. Lett., 32, 3388-3390, (2007).
    4. Feng Ji, Rongsheng Lu, Baosheng Li, Baigang Zhang and Jianquan Yao, “Mid-infrared tunable dual-wavelength generation based on a quasi-phase-matched optical parametric oscillator,” Optics Communications., 282, 126-128, (2008).
    5. Łukasz Kornaszewski,1, Markus Kohler, Usman K. Sapaev, and Derryck T. Reid1, “Designer femtosecond pulse shaping using grating-engineered quasi-phase-matching in lithium niobate,” Opt. Letts., 33, 378-380, (1999).
    6. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum. Electron., 28, 2631-2654, (1992).
    7. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple channel wavelength conversion using engineered quasi-phasematching structures in LiNbO3 waveguides,” Opt. Lett., 24, 1157-1159, (1999).
    8. Carlos R. Fernández-Pousa, and Juan Capmany., “Dammann Grating Design of Domain-Engineered Lithium Niobate for Equalized Wavelength Conversion Grids,” IEEE Photonics Tech. Letts., 17, 1037-1039, (2005).
    9. Y. W. Lee, F. C. Fan, and Y. C. Huang, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Letts., 27, 2191-2193, (2002).
    10. D. T. Reid, “Engineered quasi-phase-matching for second-garmonic generation,” J. Opt. A: Pure Appl. Opt., 5, 97-102, (2003).
    11. Randy L. Haupt and Sue Ellen Haupt, 2004: Practical Genetic Algorithms, 2nd edition, WILEY, New-York.
    12. G. Cormier, R. Boudreau, and S. Theriault, “Real-Coded Genetic Algorithm for Bragg Grating Parameter Synthesis,” Journal of the optical Society of America B, 18, 1771-1776, (2001).
    13. Dieter H. Jundt, “Temperature-Dependent Sellmeier Equation for The Index of Refraction, in Congruent Lithium Niobate,” Opt. Lett., 22, 1553-1555, (1997).
    14. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, 220, 671-680, (1983).
    15. Tanese R., “Parallel Genetic Algorithm for a Hypercube,” ICGA2, 177-183, 1987.
    16. Robert. C. Eckardt and J. Reintjes, “Phase Matching Limitations of High Efficiency Second Harmonic Generation,” IEEE J. of Quan. Elec., 20, 1178-1186 (1984)
    17. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,”, Optics Letters, 27, 43-45, (2002).
    18. Intel Core 2 Quad Q6660@ 2.4GHz.
    19. Ben-Yuan Gu, Yan Zang, and Bi-Zhen Dong “Investigations of harmonic generations in aperiodic optical superlattices,”, Journal of Applied Phsics, 87, 7629-7637, (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE