研究生: |
劉宜臻 Liu, Yi-Jhen |
---|---|
論文名稱: |
設計非周期性准相位匹配光柵以達成非等間距之多波長轉換 Design of aperiodic quasi-phase matched grating for unequally-spaced multi-channel wavelength conversion |
指導教授: |
楊尚達
Yang, Shang-Da |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 准相位匹配 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用基因演算法以求得Non-periodic optical superlattice(NOS)晶體極化反轉點所發生的位置,分別設計等高之相位匹配雙峰設計、等高且不等間距之相位匹配三峰設計、等高且等間距相位匹配四峰設計、V型且等間距相位匹配五峰設計、和等高等間距相位匹配八峰設計,並且探討製程誤差及溫度不均勻分布對匹配頻譜的影響、高轉換效率時匹配頻譜的改變,且和現有的幾種准相位匹配技術做比較。
1. J. Webjorn, V. Pruneri, P. S. J. Russell, J. R. M. Barr, D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett., 30, 894-895, (1994).
2. S. M. Gao, C. X. Yang, X. S. Xiao, Y. Tian, Z. You, and G. F. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” Journal of lightwave tech. Lett., 25, 710-718, (2007).
3. Masaki Asobe, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Optics. Lett., 32, 3388-3390, (2007).
4. Feng Ji, Rongsheng Lu, Baosheng Li, Baigang Zhang and Jianquan Yao, “Mid-infrared tunable dual-wavelength generation based on a quasi-phase-matched optical parametric oscillator,” Optics Communications., 282, 126-128, (2008).
5. Łukasz Kornaszewski,1, Markus Kohler, Usman K. Sapaev, and Derryck T. Reid1, “Designer femtosecond pulse shaping using grating-engineered quasi-phase-matching in lithium niobate,” Opt. Letts., 33, 378-380, (1999).
6. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum. Electron., 28, 2631-2654, (1992).
7. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple channel wavelength conversion using engineered quasi-phasematching structures in LiNbO3 waveguides,” Opt. Lett., 24, 1157-1159, (1999).
8. Carlos R. Fernández-Pousa, and Juan Capmany., “Dammann Grating Design of Domain-Engineered Lithium Niobate for Equalized Wavelength Conversion Grids,” IEEE Photonics Tech. Letts., 17, 1037-1039, (2005).
9. Y. W. Lee, F. C. Fan, and Y. C. Huang, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Letts., 27, 2191-2193, (2002).
10. D. T. Reid, “Engineered quasi-phase-matching for second-garmonic generation,” J. Opt. A: Pure Appl. Opt., 5, 97-102, (2003).
11. Randy L. Haupt and Sue Ellen Haupt, 2004: Practical Genetic Algorithms, 2nd edition, WILEY, New-York.
12. G. Cormier, R. Boudreau, and S. Theriault, “Real-Coded Genetic Algorithm for Bragg Grating Parameter Synthesis,” Journal of the optical Society of America B, 18, 1771-1776, (2001).
13. Dieter H. Jundt, “Temperature-Dependent Sellmeier Equation for The Index of Refraction, in Congruent Lithium Niobate,” Opt. Lett., 22, 1553-1555, (1997).
14. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, 220, 671-680, (1983).
15. Tanese R., “Parallel Genetic Algorithm for a Hypercube,” ICGA2, 177-183, 1987.
16. Robert. C. Eckardt and J. Reintjes, “Phase Matching Limitations of High Efficiency Second Harmonic Generation,” IEEE J. of Quan. Elec., 20, 1178-1186 (1984)
17. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,”, Optics Letters, 27, 43-45, (2002).
18. Intel Core 2 Quad Q6660@ 2.4GHz.
19. Ben-Yuan Gu, Yan Zang, and Bi-Zhen Dong “Investigations of harmonic generations in aperiodic optical superlattices,”, Journal of Applied Phsics, 87, 7629-7637, (2000).