簡易檢索 / 詳目顯示

研究生: 許建中
Hsu, Chien-Chung
論文名稱: 高品質有機金屬鹵化物鈣鈦礦太陽能電池的固態反應過程與無機電洞傳輸層之研究
Solid-State Reaction Process/Inorganic Hole Transport Layer for High-Quality Organometallic Halide Perovskite Solar Cells
指導教授: 陳福榮
Chen, Fu-Rong
口試委員: 張廖貴術
吳永俊
李坤穆
朱俊霖
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 62
中文關鍵詞: solid-solid reaction processin-sitularge grain sizeultra-flatperovskite
外文關鍵詞: 固-固反應製程, 臨場觀測, 大晶粒, 超平坦
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這研究中,我們展示迄今尚未報導的新型固-固反應製程(SSRP),用於製造超平坦(粗糙度約為12 nm)的大尺吋晶粒(~ 947 nm)CH3NH3PbI3鈣鈦礦薄膜。SSRP只需將碘化鉛膜(PbI2)與碘化甲基銨粉末(CH3NH3I)直接接觸,無需任何化學試劑,於120 ℃正常大氣環境下進行。透過臨場掃描式電子顯微鏡 (SEM) 研究了 SSRP 反應機制。此創新的SSRP為大量製造異質接面的鈣鈦礦太陽能電池,提供了一種簡單的方法,並且我們展示15.27 %的轉換效率(有效面積0.16 cm2)。另一方面,我們研究使用物理氣相沉積(PVD),來製備高品質無機氧化鎳(NiOx)的電洞傳輸層(HTL)薄膜,利用於鈣鈦礦太陽能電池(PSC)上。其中研究發現鈣鈦礦太陽能電池的轉換效率(PCE)與NiOx 電動傳輸層的厚度有很大的相關。透過結構、光學和電性的定量研究來優化NiOx的厚度。在主動面積為11.25 cm2的情況下,鈣鈦礦太陽能電池模組(25 cm2)的PCE為15.1 %,經過36個鈣鈦礦太陽能電池元件測試,其中最高PCE= 18.30 %,開路電壓 (Voc)= 1.05 V,短路電流密度(Jsc)= 23.89 mA/cm2 和72.87 % 的填充因子(FF),此主動面積較小,為0.16 cm2。在相同環境下,經過40 %的相對濕度(RH)和25 ℃ 於1200小時的穩定性測試後,其轉換效率NiOx相較比有機PEDOT:PSS更高於1.2–1.8倍。


    In this study, we show a novel solid-solid reaction process (SSRP), which has not yet been hitherto reported, to fabricate ultra-flat (roughness is about 12 nm) CH3NH3PbI3 perovskite thin film with large grain size (~ 947 nm). The SSRP simply involves directly contacting lead iodide thin film (PbI2) with methylammonium iodide powder (CH3NH3I) without any chemical reagents at 120 ℃ under the normal atmospheric environment. The SSRP reaction mechanism is investigated by an in-situ heating SEM. This innovative SSRP brings an easy approach to large-scale fabrication of planar heterojunction perovskite solar cells and allows us to demonstrate a power conversion efficiency of approximately 15.27 % (active area 0.16 cm2). On the other hand, we also report a perovskite solar cell (PSC) can be benefited from the high quality of inorganic nickel oxide (NiOx) as a hole transport layer (HTL) film fabricated from the physical vapor deposition (PVD) process. The power conversion efficiency (PCE) of PSC is found to depend on the thickness of NiOx HTL. The NiOx thickness is optimized via quantitative investigation of the structure, optical, and electrical properties. With an active area of 11.25 cm2, a PSC module (25 cm2) with a PCE of 15.1 % is demonstrated, while champion device of PCE= 18.30 % with an open voltage (Voc) 1.05 V, short-circuit current density (Jsc) 23.89 mA/cm2, and fill factor (FF) 72.87 % that can be achieved from 36 devices with smaller active areas of 0.16 cm2. After the stability test at 40 % relative humidity (RH) and 25 ℃ for 1200 h, the highest performance NiOx-based PSC is shown to be about 1.2–1.8 times superior to PEDOT:PSS organic HTL-based PSC in the same environment.

    摘要----------------------------------------------------i Abstract-----------------------------------------------ii 致謝---------------------------------------------------iii Contents-----------------------------------------------v Table List---------------------------------------------vii Figure Captions----------------------------------------viii Chapter 1 Introduction----------------------------------1 1.1 Perovskite Solar Cells-----------------------------1 1.2 Different Fabrication of Perovskite Solar Cells----4 1.2.1 One-step and Two-step Process--------------------4 1.2.2 Dual-Source Vapor Deposition---------------------6 1.2.3 Vapor-Assisted Solution Process------------------7 1.3 Hole Transport Layer of Perovskite Solar Cells-----9 Chapter 2 Solid-State Reaction Process for High-Quality Organometallic Halide Perovskite Solar Cells-----------12 2.1 Device Structure and Fabrication-------------------12 2.2 Results and Discussion-----------------------------18 2.2.1 Characterization---------------------------------20 2.3 Summary--------------------------------------------32 Chapter 3 Oxidized Nickel to Prepare an Inorganic Hole Transport Layer for High-Efficiency and Stability of CH3NH3PbI3 Perovskite Solar Cells----------------------33 3.1 Experimental and Methods---------------------------33 3.2 Results and Discussion-----------------------------36 3.3 Summary--------------------------------------------49 Chapter 4 Conclusion----------------------------------50 Reference----------------------------------------------51 Publication List---------------------------------------61

    [1] Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.
    [2] Sadegh, F.; Akin, S.; Moghadam, M.; Keshavarzi, R.; Mirkhani, V.; Ruiz-Preciado, M.A.; Akman, E.; Zhang, H.; Amini, M.; Tangestaninejad, S.; et al. Copolymer-Templated Nickel Oxide for High-Efficiency Mesoscopic Perovskite Solar Cells in Inverted Architecture. Adv. Funct. Mater. 2021, 31, 2102237.
    [3] Akman, E.; Akin, S. Poly(N,N0-bis-4-butylphenyl-N,N0-bisphenyl)benzidine-Based Interfacial Passivation Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture. Adv. Mater. 2021, 33, 2006087.
    [4] Akman, E.; Shalan, A.E.; Sadegh, F.; Akin, S. Moisture-Resistant FAPbI3 Perovskite Solar Cell with 22.25% Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation. ChemSusChem 2021, 14, 1176–1183.
    [5] Ozturk, T.; Akman, E.; Shalan, A.E.; Akin, S. Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%. Nano Energy 2021, 87, 106157.
    [6] Shalan, A.E.; Akman, E.; Sadegh, F.; Akin, S. Efficient and Stable Perovskite Solar Cells Enabled by Dicarboxylic Acid-Supported Perovskite Crystallization. J. Phys. Chem. Lett. 2021, 12, 997–1004.
    [7] Jung, H.S.; Park, N.G. Perovskite solar cells: From materials to devices. Small 2015, 11, 10–25.
    [8] Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Sci. Adv. 2013, 342, 344–347.
    [9] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131 (1), 6050-6051.
    [10] Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gra¨tzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-320.
    [11] Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 2013, 501, 395.
    [12] Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885.
    [13] Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687-692.
    [14] Liang, Z.; Zhang, S.; Xu, X.; Wang, N.; Wang, J.; Wang, X.; Bi, Z.; Xu, G.; Yuan, N.; Ding, J., A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 2015, 5 (74), 60562-60569.
    [15] Collavini, S.; Saliba, M.; Tress, W. R.; Holzhey, P. J.; Völker, S. F.; Domanski, K.; Turren-Cruz, S. H.; Ummadisingu, A.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M.; Delgado, J. L., Poly(ethylene glycol)–[60]Fullerene-Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis. ChemSusChem 2018, 11 (6), 1032-1039.
    [16] Zhou, Y.; Padture, N. P., Gas-Induced Formation/Transformation of Organic–Inorganic Halide Perovskites. ACS Energy Lett. 2017, 2 (9), 2166-2176.
    [17] Zhou, Z.; Wang, Z.; Zhou, Y.; Pang, S.; Wang, D.; Xu, H.; Liu, Z.; Padture, N. P.; Cui, G., Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. Angew. Chem. Int. 2015, 54 (33), 9705-9709.
    [18] Guo, Q.; Li, C.; Qiao, W.; Ma, S.; Wang, F.; Zhang, B.; Hu, L.; Dai, S.; Tan, Z. a., The growth of a CH3NH3PbI3 thin film using simplified close space sublimation for efficient and large dimensional perovskite solar cells. Energy Environ. Sci. 2016, 9 (4), 1486-1494.
    [19] Liang, P.W.; Chueh, C.C.; Williams, S.T.; Jen, A.Y. Roles of Fullerene-Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin-Film Solar Cells. Adv. Energy Mater. 2015, 5, 1402321.
    [20] Yin, X.; Yao, X.; Luo, Q.; Dai, X.; Zhou, Y.; Zheng, Y.; Zhou, Y.; Luo, S.; Li, J.; Wang, N.; et al. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact. ACS Appl. Mater. Interfaces 2017, 9, 2439–2448.
    [21] Chang, S.H.; Lin, K.F.; Chiu, K.Y.; Tsai, C.L.; Cheng, H.M.; Yeh, S.C.; Wu, W.T.; Chen, W.N.; Chen, C.T.; Chen, S.H.; et al. Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer. Sol. Energy 2015, 122, 892–899.
    [22] Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H. High performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layer. J. Mater. Chem. A 2015, 3, 9098–9102.
    [23] Kim, S.K.; Seok, H.J.; Choi, D.H.; Nam, S.J.; Kim, S.C.; Kim, H.K. Comparison of NiOx thin film deposited by spin-coating or thermal evaporation for application as a hole transport layer of perovskite solar cells. RSC Adv. 2020, 10, 43847–43852.
    [24] D’Amario, L.; Fohlinger, J.; Boschloo, G.; Hammarstrom, L. Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chem. Sci. 2018, 9, 223–230.
    [25] Hossain, M.I.; Shahiduzzaman, M.; Ahmed, S.; Huqe, M.R.; Qarony, W.; Saleque, A.M.; Akhtaruzzaman, M.; Knipp, D.; Tsang, T.H.; Taima, T.; et al. Near field control for enhanced photovoltaic performance and photostability in perovskite solar cells. Nano Energy 2021, 89, 106388.
    [26] Hossain, M.I.; Shahiduzzaman, M.; Saleque, A.M.; Huqe, M.R.; Qarony, W.; Ahmed, S.; Akhtaruzzaman, M.; Knipp, D.; Tsang, Y.H.; Taima, T.; et al. Improved Nanophotonic Front Contact Design for High Performance Perovskite Single-Junction and Perovskite/Perovskite Tandem Solar Cells. Sol. RRL 2021, 5, 2100509.
    [27] Hossain, M.I.; Saleque, A.M.; Ahmed, S.; Saidjafarzoda, I.; Shahiduzzaman, M.; Qarony,W.; Knipp, D.; Biyikli, N.; Tsang, Y.H. Perovskite/perovskite planer tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy 2021, 79, 105400.
    [28] Muslih, W.Y.; Shahiduzzaman, M.; Akhtaruzzaman, M.; Hossain, M.I.; Wang, L.; Alkhammash, H.I.; Alharthi, S.S.; Nakano, M.; Karakawa, M.; Aminuzzaman, M. Reproducible perovskite solar cells using a simple solvent mediated sol-gel synthesized NiOx hole transport layer. Appl. Phys. 2022, 15, 015504.
    [29] Hossain, M.I.; Hasan, A.K.M.; Qarony, W.; Shahiduzzaman, M.; Islam, M.A.; Ishikawa, Y.; Uraoka, Y.; Amin, N.; Knipp, D.; Akhtaruzzaman, A.; et al. Electrical and Optical Properties of Nickel- Oxide Films for Efficient Perovskite Solar Cells. Small Methods 2020, 4, 2000454.
    [30] Chen, W.; Liu, F.Z.; Feng, X.Y.; Djurišic´, A.; Chan, W.K.; He, Z.B. Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700722.
    [31] Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1600474.
    [32] Li, M.H.; Shen, P.S.; Wang, K.C.; Guo, T.F.; Chen, P. Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 2015, 3, 9011–9019
    [33] Chen, W.; Wu, Y.; Fan, J.; Djurišic´, A.; Liu, F.; Tam, H.W.; Ng, A.; Surya, C.; Chan, W.K.; Wang, D.; et al. Understanding the Doping Effect on NiO: Toward High-Performance Inverted Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1703519.
    [34] Jeng, J.Y.; Chen, K.C.; Chiang, T.Y.; Lin, P.Y.; Tsai, T.D.; Chang, Y.C.; Guo, T.F.; Chen, P.; Wen, T.C.; Hsu, Y.J. Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2014, 26, 4107–4113.
    [35] Corani, A.; Li, M.H.; Shen, P.S.; Chen, P.; Guo, T.F.; Nahhas, A.E.; Zheng, K.; Yartsev, A.; Sundström, V.; Ponseca, C.S., Jr. Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as p-Type
    Contact Electrode. J. Phys. Chem. Lett. 2016, 7, 1096–1101.
    [36] Zhang, B.; Su, J.; Guo, X.; Zhou, L.; Lin, Z.; Feng, L.; Zhang, J.; Chang, J.; Hao, Y. NiO/ Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells. Adv. Sci. 2020, 7, 1903044.
    [37] You, J.; Meng, L.; Song, T.B.; Guo, T.F.; Yang, Y.; Chang, W.H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81.
    [38] Yin, X.; Han, J.; Zhou, Y.; Gu, Y.; Tai, M.; Nan, H.; Zhou, Y.; Li, J.; Lin, H. Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. J. Mater. Chem. A 2019, 7, 5666–5676.
    [39] Kim, H.; Lee, J.; Ok, S.; Choe, Y. Effects of pentacene-doped PEDOT: PSS as a hole-conducting layer on the performance characteristics of polymer photovoltaic cells. Nanoscale Res. Lett. 2012, 7, 5.
    [40] Ukoba, K.O.; Eloka-Eboka, A.E.; Inambao, F.L. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew. Sustain. Energy Rev. 2018, 82, 2900–2915.
    [41] Qiu, Z.; Gong, H.; Zheng, G.; Yuan, S.; Zhang, H.; Zhu, X.; Zhou, H.; Cao, B. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C 2017, 5, 7084–7094.
    [42] Liu, Z.; Chang, J.; Lin, Z.; Zhou, L.; Yang, Z.; Chen, D.; Zhang, C.; Liu, S.; Hao, Y. High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Adv. Energy Mater. 2018, 8, 1703432.
    [43] Zhong, Y.; Suzuki, K.; Inoue, D.; Hashizume, D.; Izawa, S.; Hashimoto, K.; Koganezawa, T.; Tajima, K. Interface-induced crystallization and nanostructure formation of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in polymer blend films and its application in photovoltaics. J. Mater. Chem. A 2016, 4, 3335–3341.
    [44] Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24 (1), 151-157.
    [45] Nagabhushana, G. P.; Shivaramaiah, R.; Navrotsky, A., Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. PNAS. 2016, 113 (28), 7717-7721.
    [46] Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 2015, 3, 8178-8184.
    [47] Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G., Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2014, 2, 15897-15903.
    [48] Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J.-P.; Decoppet, J.-D.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2016, 2 (1), 1501170.
    [49] Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yang, W. S.; Seo, J.; Yun, J. S.; Ho-Baillie, A.; Huang, S.; Green, M. A.; Seidel, J.; Ahn, T. K.; Seok, S. I., Beneficial Effects of PbI2 Incorporated in Organo-Lead Halide Perovskite Solar Cells. Adv. Energy Mater. 2016, 6 (4), 1502104.
    [50] Ralaiarisoa, M.; Busby, Y.; Frisch, J.; Salzmann, I.; Pireaux, J.J.; Koch, N. Correlation of annealing time with crystal structure, composition, and electronic properties of CH3NH3PbI3-xClx mixed-halide perovskite films, Phys. Chem. Chem. Phys. 19 (2017) 828–836
    [51] Tian, L.; Zhang, W.; Huang, Y.; Wen, F.; Yu, H.; Li, Y.; Wang, Q.; Peng, C.; Ma, Z.; Hu, T.; Du, L.; Zhang, M. Effects of annealing time on triple cation perovskite films and their solar cells, ACS Appl. Mater. Interfaces 12 (2020) 29344–29356.
    [52] Li, G.; Ching, K. L.; Ho, J. Y. L.; Wong, M.; Wok, H.-S., Identifying the Optimum Morphology in High‐Performance Perovskite Solar Cells. adv. Energy mater. 2015, 5, 1401775.
    [52] Luo, P.; Liu, Z.; Xia, W.; Yuan, C.; Cheng, J.; Lu, Y., Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions. ACS Appl. Mater. Interfaces 2015, 7, 2708-2714.
    [53] Carrillo, J.; Guerrero, A.; Rahimnejad, S.; Almora, O.; Zarazua, I.; Mas-Marza, E.; Bisquert, J.; Garcia-Belmonte, G., Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells. Adv. Energy Mater. 2016, 6 (9), 1502246.
    [54] Wang, J.-F.; Zhu, L.; Zhao, B.-G.; Zhao, Y.-L.; Song, J.; Gu, X.-Q.; Qiang, Y.-H., Surface engineering of perovskite films for efficient solar cells. Sci. Rep. 2017, 7 (1), 14478.
    [55] Huang, P.-H.; Wang, Y.-H.; Huang, C.-W.; Chen, W.-R.; Huang, C.-J., Investigation of Inverted Perovskite Solar Cells for Viscosity of PEDOT:PSS Solution. Crystals 2018, 8 (9), 358
    [56] Qarony, W.; Hossain, M.I.; Jovanov, V.; Salleo, A.; Knipp, D. Influence of Perovskite Interface Morphology on the Photon Management in Perovskite/Silicon Tandem Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 15080–15086.
    [57] Hossain, M.I.; Hongsingthong, A.; Qarony,W.; Sichanugrist, P.; Konagai, M.; Salleo, A.; Knipp, D.; Tsang, Y.H. Optics of Perovskite Solar Cell Front Contacts. ACS Appl. Mater. Interfaces 2019, 11, 14693–14701.
    [58] Hossain, M.I.; Khan, H.A.; Kozawa, M.; Qarony,W.; Salleo, A.; Hardeberg, J.Y.; Fujiwara, H.; Tsang, Y.H.; Knipp, D. Perovskite Color Detectors: Approaching the Efficiency Limit. ACS Appl. Mater. Interfaces 2020, 12, 47831–47839.
    [59] Wheeler, S.; Deledalle, F.; Tokmoldin, N.; Kirchartz, T.; Nelson, J.; Durrant, J.R. Influence of Surface Recombination on Charge- Carrier Kinetics in Organic Bulk Heterojunction Solar Cells with Nickel Oxide Interlayers. Phys. Rev. Appl. 2015, 4, 024020.
    [60] Jin, Z.; Guo, Y.; Yuan, S.; Zhao, J.S.; Liang, X.M.; Qin, Y.; Zhang, J.P.; Ai, X.C. Modification of NiOx hole transport layer for acceleration of charge extraction in inverted perovskite solar cells. RSC Adv. 2020, 10, 12289–12296.

    QR CODE