研究生: |
林英博 |
---|---|
論文名稱: |
東、西部台灣眼鏡蛇蛇毒蛋白 之細胞毒性與肌肉毒性分析 The cytotoxicity and myotoxicity analysis of toxic proteins from East and West Taiwan Cobra(Naja naja atra) |
指導教授: |
吳文桂
Wen-guey Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 台灣眼鏡蛇 、心臟毒素 、肌肉毒性 、肌肉壞死 |
外文關鍵詞: | naja atra, cardiotoxin, myotoxicity, myonecrosis |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雖然一般觀念中把眼鏡蛇歸類於神經性毒性,但是台灣眼鏡蛇咬傷主要產生局部紅腫及肢體壞死,且壞死組織容易造成革蘭氏陰性細菌的感染,而神經毒性的表現:神經—肌肉傳導阻斷及呼吸困難的症狀,約佔5%而已。有研究指出,局部組織的壞死並非因為細菌感染傷口造成,而是來自於蛇毒中的心臟毒素。我們發現在東、西部的台灣眼鏡蛇毒液中,不僅其毒力強弱明顯不同,且心臟毒素的表現也有不同的模式,我們懷疑這可能在傷口造成程度不等的傷害,所以針對東、西部台灣眼鏡蛇毒液中的不同的毒蛋白做了毒性的比較。因為心臟毒素的作用機制,是屬於細胞膜毒素的一種,而且有證據顯示心臟毒素會造成骨骼肌細胞的壞死,故在實驗中我們以蛇毒對細胞及肌肉組織的毒性表現來做觀察。結果顯示,蛇毒中的毒蛋白彼此之間明顯存在著協同的作用,且東、西部的眼鏡蛇毒確實有不同的生理毒性差異。根據細胞及動物實驗的觀察推測,相同劑量的蛇毒,西部(白腹1型)眼鏡蛇的細胞與肌肉毒性最高;東部(黑腹)眼鏡蛇與另一型的西部(白腹2型)眼鏡蛇則互有不同。而這個差異顯然是來自於心臟毒素的不同表現,在進一步比較不同的毒蛋白後,發現西部(白腹1型)眼鏡蛇含量最多的心臟毒素A3有最強的細胞與肌肉毒性;西部(白腹2型)眼鏡蛇含量較高的心臟毒素A2、A4有較強的細胞毒性,而東部(黑腹)眼鏡蛇含量較高的心臟毒素A1、A6則有較強的肌肉毒性。若再考慮蛇咬的單次排毒量,則東部(黑腹)眼鏡蛇的肌肉毒性應超過西部(白腹)眼鏡蛇4倍以上。
Though we sort out the cobra in nerve toxicity in the general idea , some red and swollen in local tissue and limbs necrosis are downright bad that emerges from Taiwan cobra(Naja atra) bite mainly, and the necrosis tissue is apt to infect with the Gram's negative bacterium , and the nerve toxicity: blocking neuron— muscle conducts and difficulty in breathing , just account for 5% . Study points out that the necrosis does not cause by bacterial infection , but by cardiotoxin of snake venom. We find that in the east and western Taiwan cobra venom , not merely its poisonous strength power is obviously different , and the composition of the cardiotoxin has different ways, we suspect that this may cause the wound injury in different degrees , so we has directed against the different toxin proteins in the east and western Taiwan cobra venom and make toxicity comparison. Because of the functional mechanism of the cardiotoxin is one kind of the membrane toxin , and the evidence shows that the cardiotoxin will cause the necrosis of the skeletal muscle cell , so we observe the cell toxicity and myotoxicity of the snake venom in the experiment . The result shows that the toxin proteins in the snake venom obviously have synergistic effect , and the east and western cobra venom really have different toxicity in physiology . Infer according to observation of the cell and animal experiment , by the same dosage of snake venom , the west(white belly 1) cobra have the highest cell toxicity and myotoxicity ; the cobra of east(black belly) and another type of west(white belly 2) have difference each other . And the differences are come from cardiotoxin obviously . To compare with different toxin proteins , we find that in the west( white belly 1) cobra , the most contents— cardiotoxin A3 has the strongest cell and muscle toxicity ; and in the west(white belly 2) cobra , the higher contents—cardiotoxin A2 , A4 have stronger cell toxicity ; and higher contents of the east(black belly) cobra , cardiotoxin A1 , A6 have stronger myotoxicity . If we consider the venom quantity by every single time which the snake bites , then the myotoxicity of the east(black belly) cobra should exceed more than 4 times of cobra in the west (white belly).
Agarwal MM, Ankra-Badu George A.
Serum creatine kinase: A marker for muscle damage in sickle cell painful crisis
Annals of Saudi Medicine, Vol 19, No 3, 1999
Berry David, Shriver Zachary, Natke Barbara, Kwan Chi-Pong, Venkataraman Ganesh, and Sasisekharan Ram
Heparan sulfate glycosaminoglycans derived from endothelial cells and smooth muscle cells differentially modulate Fibroblast Growth Factor-2 biological activity through Fibroblast Growth Factor Receptor-1.
Biochemical Journal Immediate Publication,Mar 2003,manuscript BJ20021760
Bougis P, Rochat H, Pieroni G, Verger R.
Penetration of phospholipid monolayers by cardiotoxins.
Biochemistry 1981; 20: 4915–20.
Bougis P, Tessier M, Van Rietschoten J, Rochat H, Faucon JF, Dufourcq J.
Are interactions with phospholipids responsible for pharmacological activities of cardiotoxins?
Mol Cell Biochem. 1983;55(1):49-64.
Calil-Elias S., Thattassery E., Martinez A.M.B., Melo, P.A.
Effect of perimuscular injection of Bothrops jararacussu venom on plasma creatine kinase levels in mice: influence of dose and volume.
Brazilian Journal of Medican and Biological Research, 2002, 35, 1233-1235.
Chang CC.
The action of snake venoms on nerve and muscle.
In:Lee CY (ed.). Snake Venoms. Springer, Berlin. 1979; 309–58.
Chen YH, Hu CT, Young JT.
Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membranedisruptive polypeptide).
Biochem. Int. 1984; 8: 329–38.
Chen YH, Liou RF, Hu CT, Juan CC, Yang JT.
Interaction of snake venom cardiotoxin (a membrane-disruptive polypeptide) with human erythrocytes.
Mol. Cell. Biochem. 1987; 73: 69–76.
Chien K.Y., Chiang C.M., Hseu Y.C., Vyas A. A., Rule G.S., and Wu W.G.
Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions.
J. of Biol. Chem., 1994, 269, 14473-14483.
Chippaux JP, Williams V, White J
Snake venom variability:methods of study, results and interpretation.
Toxicon (1991)29:1279–1303
Condera E.
Hemolytic effects of snake venoms.
In: Lee CY (ed.). Snake Venoms. Springer, Berlin. 1979, 448–79.
Condera E.
Membrane-active polypeptides from snake venom: Cardiotoxin and haemocytotoxin.
Experimentia 1974; 30: 121–9.
Couteaux R, Mira JC, d’Albis A.
Regeneration of muscles after cardiotoxin injury.
I. Cytological aspects. Biol. Cell 1988; 62: 171–82.
Creer Simon, Malhotra Anita, Thorpe Roger S., Stocklin Reto, Favreau Philippe, Chou Wen Hao
Genetic and Ecological Correlates of Intraspecific Variation in Pitviper Venom Composition Detected Using Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) and Isoelectric Focusing
J Mol Evol ,2003, 56:317–329
Daltry JC, Wuster W, and Thorpe RS
Diet and snake venom evolution.
Nature, February 8, 1996; 379(6565): 537-40.
Dennis EA
Diversity of group types, regulation, and function of phospholipase A2
J. Biol. Chem., May 1994; 269: 13057 - 13060.
Dubovskii Peter V., Lesovoy Dmitry M., Dubinnyi Maxim A., Utkin Yuri N.,Arseniev Alexander S.
Interaction of the P-type cardiotoxin with phospholipid membranes
Eur. J. Biochem.,2003, 270, 2038–2046
Duncan CJ
Role of intracellular calcium in promoting muscle damage: a strategy for controlling the dystrophic condition.
Experientia, Dec 1978; 34(12): 1531-5.
Efremov Roman G.,Volynsky Pavel E.,Nolde Dmitry E.,Dubovskii Peter V.,Arseniev Alexander S.
Interaction of Cardiotoxins with Membranes: A Molecular Modeling Study
Biophysical Journal Volume 83 July 2002 144–153
Fletcher Jefrey E.and Jiang Ming-Shi
Lys49 phospholipase A2 myotoxins lyse cell cultures by two distinct mechanisms
Toxicon,1998,36,1549-1555
Forouhar F, Huang WN, Liu JH, Chien KY, Wu WG, Hsiao CD.
Structural basis of membrane-induced cardiotoxin A3 oligomerization.
J Biol Chem. 2003 Jun 13;278(24):21980-8. Epub 2003 Mar 26.
Fry BG, Wuster W, Kini RM, Brusic V, Khan A, Venkataraman D, and Rooney AP
Molecular evolution and phylogeny of elapid snake venom three-finger toxins.
J Mol Evol, Jul 2003; 57(1): 110-29.
Gutierrez J.M., Ownby C.L.
Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity.
Toxicon, 2003, 42, 915-931.
Gutierrez JM, Rojas G, Da Silva Junior NJ, and Nunez J
Experimental myonecrosis induced by the venoms of South American Micrurus (coral snakes).
Toxicon, Oct 1992; 30(10): 1299-302.
Gutierrez Jose Maria, Arroyo Olga, Chaves Fernando, Lomonte Bruno, Cerdas Luis.
Pathogenesis of myonecrosis induced by coral snake (Micrurus nigrocinctus ) venom in mice.
Br. J. exp. Path, 1986, 67, 1-12
Harris J.B.
Myotoxic phospholipases A2 and the regeneration of skeletal muscles.
Toxicon, 2003, 42, 933-945.
Huang WN, Sue SC, Wang DS, Wu PL, Wu WG.
Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach.
Biochemistry. 2003 Jun 24;42(24):7457-66.
Hung Dong-Zong, Liau Ming-Yi, Lin-Shiau Shoei-Yn
The clinical significance of venom detection in patients of cobra snakebite
Toxicon ,2003,41, 409–415
Karev Georgy P, Wolf Yuri I,Rzhetsky Andrey Y, Berezovskaya Faina S, Koonin Eugene V.
Bitrh and death of protein domains: A simple model of evolution explains power law behavior.
BMC Evolutionary Biology, 2002, 2:18 1-26.
Kwan C.Y., Kwan T.K., Huang, S.J.
Effect of calcium on the vascular contraction induced by cobra venom cardiotoxin.
Clinical and Experimental Pharmacology and Physiology, 2002, 29, 823-828.
Lai M.K., Wen C.Y., Lee C.Y.
Local lesions caused by cardiotoxin isolated from Formosan cobra venom.
J. Formosan Med. Assoc.,1972, 71, 328–332.
Lee CY, Chang CC, Chiu TH, Chiu PJ, Tseng TC, and Lee SY
Pharmacological properties of cardiotoxin isolated from Formosan cobra venom.
Naunyn Schmiedebergs Arch Exp Pathol Pharmakol, Jan 1968; 259(4): 360-74.
Lewis Richard J. and Garcia Maria L.
Therapeutic potential of venom peptides
NATURE REVIEWS,DRUG DISCOVERY, VOLUME 2 ,OCTOBER 2003,790-802
Liau M.Y., Huang R.-J.
Toxoids and antivenoms of venomous snakes in Taiwan.
Toxicolo.-Toxin Reviews, 1997, 16, 163-175.
Lomonte B., Gutierrez J. M., Romero M., Nunez J., Tarkowski A., Hanson L. A.
An MTT-based method for the in vivo quantification of myotoxic activity of snake venoms and its neutralization by antibodies.
Journal of Immunological Methods, 1993, 161, 231-237
Lopes-Ferreira M, Nunez J, Rucavado A, Farsky SH, Lomonte B, Angulo Y, Moura Da Silva AM, and Gutierrez JM
Skeletal muscle necrosis and regeneration after injection of Thalassophryne nattereri (niquim) fish venom in mice.
Int J Exp Pathol, Feb 2001; 82(1): 55-64.
NEI MASATOSHI, GU XUN, SITNIKOVA TATYANA
Evolution by the birth-and=death process in multigene families of the vertebrate immune system.
Proc. Natl. Acad. Sci. USA,Jul 1997, 94: 7799-7806.
Ouyang C, Teng CM.
The action mechanism of the purified platelet aggregation principle of Trimeresurus mucrosauamatus venom.
Thromb.Haemost. 1979; 41: 475–90.
Ownby Charlotte L., Selistre de Araujo Heloisa S., White Steven P., Fletcher Jefrey E.
Lysine 49 phospholipase A2 proteins
Toxicon 37 (1999) 411-445
Ownby CL, Fletcher JE, and Colberg TR
Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo.
Toxicon, Jun 1993; 31(6): 697-709.
Rosenberg P.
Lethal potency of snake venom phospholipase A2 enzymes
In Venom Phospholipase A2 Enzymes:STRUCTURE,FUNCTION AND MECHANASM
MANJUNATHA KINI R. (ed.) JOHN WILEY & SONS Ltd, 1997
Shiau SY, Huang MC, Lee CY.
Mechanism of action of cobra cardiotoxin in the skeletal muscle.
J. Pharmacol. Exp. Ther. 1976; 196:758–70.
Slowinski JB, Knight A, and Rooney AP
Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins.
Mol Phylogenet Evol, Dec 1997; 8(3): 349-62.
Sun JJ, Walker MJA.
Actions of cardiotoxin from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue.
Toxicon 1986;24: 233–45.
Teixeira CF, Landucci EC, Antunes E, Chacur M, and Cury Y
Inflammatory effects of snake venom myotoxic phospholipases A2.
Toxicon, Dec 2003; 42(8): 947-62.
Trump BF, Berezesky IK, Cowley RA.
The cellular and subcellular characteristics of acute and chronic injury with emphasis on the role of calcium.
Pathophysiology of Shock, Anoxia, and Ischemia. Baltimore/London: Williams and Wilkins, 1982, pp 6–46.
Tseng L.F., Chiu T.H.,Lee C.Y.
Absorption and distribution of 131I-labeled cobra venom and its purified toxins.
Toxicology and Applied Pharmacology 1968, 12, 526-535
Tsetlin V.I., Hucho F.
Snake and snail toxins acting on nicotinic acetylcholine receptors:fundamental aspects and medical applications
FEBS Letters ,557 ,2004, 9-13
Tu A.
Venoms: Chemistry and Molecular Biology.
John Wiley and Sons,New York. 1977.
Wrogeman K and Pena SDJ.
Mitochondrial calcium overload: a general mechanism for cell necrosis in muscle diseases.
Lancet ,1976,27: 672–673
Wu W G.
Cobra Cardiotoxin and Phospholipase A(2) as GAG-binding Toxins; On the Path from Structure to Cardiotoxicity and Inflammation.
Trends Cardiovasc Med. 1998 Aug;8(6):270-8.
李紹禎
Binding specificity and binding mode of cobra cardiotoxin-heparin interaction and their biological implication
國立清華大學/生命科學系/2004/博士/
吳欽翔
Comparison and Identification of venomous components between Eastern and Western Taiwan Cobra (Naja atra) by Two Dimensional High Performance Liquid Chromatography (2D-HPLC) and Electrospray Ionization Mass Spectrometry (ESI-MS)
國立清華大學/生命科學系/2003/碩士/
洪東榮
Studies on the Diagnosis、Treatment and Toxic Mechanism of Taiwan Venomous Snakebites
國立臺灣大學/毒理學研究所/2002/博士
陳淑惠,王端禎,陳村光,廖明一
臺灣東部及西部地區飯匙倩蛇毒毒力之比較.
中華醫誌,1984, 34, 644-649.
黃維寧
The study of pore formation mechanism of the cobra cardiotoxin on membranes
國立清華大學/生命科學系/2003/博士/
覃公平 主編
中國毒蛇學(CHINA POISONOUS SNAKE RESEARCH)
廣西科學技術出版社出版 1999年 第三版