簡易檢索 / 詳目顯示

研究生: 周穆麒
Chi, Chou Mu
論文名稱: 液體環境下鎖相迴路驅動之電容式振盪器
Phase-Locked-Loop Driven Capacitive Oscillators Operating in Liquids
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 蘇育全
劉承賢
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 62
中文關鍵詞: 電容式振盪器
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文為首篇在液體環境中使用電容式感測的微機電振盪器,在過去的研究中主要受限於電容式感測結果被直接從驅動電極通過液體的驅動訊號影響,使原本在液體中振動位移已經降低許多的機械結構更不易感測出位移的電訊號,此篇使用調制的方式將機械結構與驅動訊號分離,便能解決此問題。此外,本篇論文也整合了鎖相迴路,藉由鎖相迴路來使機械結構能維持振動,其中維持整個迴路的穩定振盪,是由於機械結構的訊號為二階系統,在最大的位移時會有著與驅動訊號相差-90度的訊號,而鎖相迴路補足這90度的相位差來完成一個振盪迴圈。本論文使用TSMC 2-polysilicon 4-metal 0.35-m CMOS process,並使用Piranha蝕刻金屬、Silox Vapox III蝕刻二氧化矽,兩種等向性溼蝕刻將結構釋放,最後使用活性離子刻蝕將電路所需接點的金屬露出。整顆晶片大小為2.8mm×2.8mm。
    本篇論文使用了50 kHz結構,感測出純水、丙酮、異丙醇、乙醇四種液體,在空氣中測出頻率為51.2 kHz的共振器,在以上四種液體中使用鎖相迴路鎖定之頻率分別為78 kHz、121.9 kHz、146 kHz、202 kHz,以及空氣中頻率為46 kHz的共振器,使用鎖相迴路鎖定之頻率分別為85.1 kHz、126.3 kHz、148.3 kHz、211 kHz,其結果證實頻率與液體的雷諾數相關,但為非線性模型,且與共振頻率有相當大的關聯性。


    摘要 I Abstract II 致謝 III 目錄 IV 第一章 緒論 1 1-1研究動機 1 1-2 微機電系統的應用與研究 3 1-3 文獻回顧與比較 5 1-4論文架構 6 第二章 感測器設計與分析 7 2-1振盪器架構 8 2-2機械結構模擬 9 2-3共振器與電容式感測 18 2-4結構振動與液體關係 20 2-5結構的製程 22 2-6電路簡介 26 2-7緩衝器設計與模擬 26 2-8感測電路設計與模擬 29 2-9解碼器設計與模擬 31 2-10解調器設計與模擬 33 2-11鎖相迴路 35 2-12晶片布局圖 36 2-13外接電路圖以及外接電路數據 37 第三章 量測 39 3-1感測電路 39 3-2結構共振頻率與感測電路 39 3-3調制與解調 42 3-4共振器與減法器 48 3-5鎖相迴路與感測電路 48 3-6液體量測 49 第四章 結論 59 4-1研究成果與討論 59 4-2未來工作 59 參考文獻 60

    [1] R.M. Lec , X.J. Zhang, and J.M.Hammond, “A Remote Acoustic Engine Oil Quality Sensor, IEEE Ultrasonics Symposium,” vol. 1, pp. 419-422, October, 1997.
    [2] B. Jakoby, M. Scherer, M. Buskies, H. Eisenschmid, “Microacoustic Viscosity Sensor for Automotive Applications,” IEEE Sensors, vol. 2, pp.1587-1590, 2002.
    [3] S. J. Martin, V. E. Granstaff, and G. C. Frye, “Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading,” Analytical Chemistry, vol. 63, pp.2272-2281, October, 1991.
    [4] K. K. Kanazawa and J. G. Gordon II, “The Oscillation Frequency of A Quartz Resonator in Contact With A Liquid,” Analytica Chimica Acta, vol. 175, pp.99-105, June, 1985.
    [5] G. Muralidharan, A. Wig, L.A. Pinnaduwage, D. Hedden, T. Thundat, R. T. Lareau, “Adsorption–Desorption Characteristics of Explosive Vapors Investigated with Microcantilevers,” Ultramicroscopy, vol. 97, pp.433-439, October–November, 2003.
    [6] B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Mechanical Resonant Immunospecific Biological Detector,” Applied Physics Letters, vol. 77, pp.450-452, July, 2000.
    [7] K. M. Goeders, J. S. Colton, and L. A. Bottomley, “Microcantilevers: Sensing Chemical Interactions via Mechanical Motion,” Chemical Reviews, vol. 108, pp.522-542, January, 2008.
    [8] A. Bongrain , C. Agnès, L. Rousseau, E. Scorsone, J. C. Arnault, S. Ruffinatto, F. Omnès, P. Mailley, G. Lissorgues, and P. Bergonzo, “High Sensitivity of Diamond Resonant Microcantilevers for Direct Detection in Liquids As Probed by Molecular Electrostatic Surface Interactions,” Langmuir, vol. 27, pp.12226-12234, August, 2011.
    [9] M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, C. Pellet, I. Dufour, “A Straightforward Determination of Fluid Viscosity and Density Using Microcantilevers: From Experimental Data to Analytical Expressions,” Sensors and Actuators A: Physical, vol. 172, pp.40-46, September, 2010.
    [10] S. Boskovic, J. W. M. Chon, P. Mulvaney, J. E. Sader, “Rheological Measurements Using Microcantilevers,” Journal of Rheology, vol. 46, pp.891-899, June, 2002.
    [11] Y. C. Li, M. H. Ho, S. J. Hung, M. H. Chen and M. S. C. Lu, “CMOS Micromachined Capacitive Cantilevers for Mass Sensing,” Journal of Micromechanics and Microengineering, vol. 16, pp.2659-2665, December, 2006.
    [12] S. J. Martin, R. W. Cernosek, and J. J. Spates , “Sensing Liquid Properties with Shear-Mode Resonator Sensors,” Transducers '95 Eurosensors IX, pp.712-715, June, 1995.
    [13] J. Tamayo, A.D.L. Humphris, A.M. Malloy, and M.J. Miles, “Chemical Sensors and Biosensors in Liquid Environment Based on Microcantilevers with Amplified Quality Factor,” Ultramicroscopy, vol. 86, pp.167-173, July, 2001.
    [14] E. K. Reichel, C. Riesch, Franz Keplinger, C. E. A. Kirschhock, B. Jakoby, “Analysis and Experimental Verification of A Metallic Suspended Plate Resonator for Viscosity Sensing,” Sensors and Actuators A: Physical, vol. 162, pp.418-424, August, 2009.
    [15] R. Cox, F. Josse, M. J. Wenzel, S. M. Heinrich, and I. Dufour, “Generalized Model of Resonant Polymer-Coated Microcantilevers in Viscous Liquid Media,” Analytical Chemistry, vol. 80, pp. 5760-5767, August, 2008.
    [16] S. Basak, A. Ramana, and S. V. Garimella, “Hydrodynamic Loading of Microcantilevers Vibrating in Viscous Fluids, Applied Physics,” vol. 99, Issue 11, 114906, June, 2006.
    [17] J. J. Blech, “On Isothermal Squeeze Films,” Journal of Tribology, vol. 105, pp.615-620, November, 2009.
    [18] D. W. Satchel and J. C. Greenwood, “A Thermally-Excited Silicon Accelerometer ,Sensors and Actuators,” vol. 17, pp. 241–245, May,1989.
    [19] A. D. L. Humphris, J. Tamayo, and M. J. Miles, “Active Quality Factor Control in Liquids for Force Spectroscopy,” American Chemical Society, vol. 16, pp.7891-7894, August, 2000.
    [20] B. Jakoby, M. Scherer, M. Buskies, and H. Eisenschmid, “An Automotive Engine Oil Viscosity Sensor,” IEEE Sensors Journal, vol. 3, pp.562-568, October, 2003.
    [21] L.F. Matsiev, J. W. Bennett, E. W. McFarland, “Application of Low Frequency Mechanical Resonators to Liquid Property Measurements,” IEEE Ultrasonics Symposium, vol. 1 and 2, pp.459-462, October, 1998.
    [22] R. Cox, J. Zhang, F. Josse, S. M. Heinrich, I. Dufour, L. A. Beardslee, O. Brand, “Damping and Mass Sensitivity of Laterally Vibrating Resonant Microcantilevers in Viscous Liquid Media,” Frequency Control and the European Frequency and Time Forum (FCS), pp.1-6, May, 2011.
    [23] Y. Yamamoto, S. Matsumoto, H. Yabuno, M. Kuroda, T. Yamamoto, and S. Choi, “Visco-MEMS: The Mems-Based Viscosity Sensor Using Dual Spiral Vibrating Beams,” Transducers 2013, pp.94-97, June, 2013.
    [24] A. Agoston, F. Keplinger, B. Jakoby, “Evaluation of A Vibrating Micromachined Cantilever Sensor for Measuring the Viscosity of Complex Organic Liquids,” Sensors and Actuators A: Physical, vol. 123 and 124, pp.82-86, September, 2005.
    [25] E. Uzunlar, B. Beykal, K. Ehrlich, D. Sanli, A. Jonas, B. E. Alaca, A. Kiraz, H. Urey, C. Erkey, “Frequency Response of Microcantilevers Immersed in Gaseous,” Liquid, and Supercritical Carbon Dioxide, The Journal of Supercritical Fluids, vol. 81, pp.254-264, September, 2013.
    [26] W. Y. Shih, X. Li, H. Gu, W. H. Shih,and I. A. Aksay, “Simultaneous Liquid Viscosity and Density Determination With Piezoelectric Unimorph Cantilevers,” Applied Physics, vol. 89, pp.1497-1505, January, 2001.
    [27] M. Perlmutter, and L. Robin, High-Performance, “Low Cost Inertial MEMS: a Market in Motion, Position Location and Navigation Symposium,” pp.225-229, April, 2012.
    [28] M. Heinisch, E.K. Reichel, T. V. Brunnmaier, B. Jakoby, “U-Shaped, Wire-Based Oscillators for Rheological Applications Bridging the Gap Between 100 Hz and 100 kHz,” Transducers 2013, pp.90-93, June, 2013.
    [29] B. A. Martin, S. W. Wenzel and R. M. White, “Viscosity and Density Sensing with Ultrasonic Plate Waves,” Sensors and Actuators A: Physical, vol. 22, pp.704-708, June, 1990.
    [30] K. R. Williams, K. Gupta, and M. Wasilik, “Etch Rates for Micromachining Processing—Part II, Microelectromechanical Systems,” vol. 12, pp.761-778, December, 2003.
    [31] R. Cox, F. Josse, S. Heinrich, I. Dufour, O. Brand, “Resonant Microcantilevers Vibrating Laterally in Viscous Liquid Media,” Frequency Control Symposium, vol. 10, pp.85-90, June, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE