研究生: |
辛達雅 Noor Hidayat Abu Bakar |
---|---|
論文名稱: |
利用結合質譜儀之筆型探針裝置對固體表面散發出揮發性物質進行分析 Analysis of Volatile Species Emanating from Solid Surfaces Using Pen-probe Devices Coupled with Mass Spectrometer |
指導教授: |
鄂本帕偉
Urban, Pawel L. |
口試委員: |
許馨云
Hsu, Hsin-Yun 邱顯鎰 Chiu, Hisen-Yi 洪嘉呈 Horng, Jia-Cherng Jason 陳致真 Zhen, Chih-Chen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 揮發性有機化合物 、氮氣 、手持式探頭 、大氣壓化學電離 、串聯質譜儀 、化學物質圖譜 、四極柱飛行時間質譜儀 、皮膚代謝物組學 |
外文關鍵詞: | volatile organic compound, nitrogen, hand-held probe, atmospheric pressure chemical ionization, tandem mass spectrometer, chemical maps, quadrupole time-of-flight mass spectrometer, skin metabolomic |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
揮發性有機化合物(VOCs)是一種大量存在於生物及非生物的物質。一般情況下,揮發性會在均勻溶劑萃取步驟後分析。然而,此方法不能對固體樣品中的揮發性有機化合物進行非靶向空間分布分析。而透過將揮發性有機化合物的空間分布視覺化可以定位大量樣品中的揮發性有機化合物之來源。所以,在第一個研究計畫中(第二章),我們展示出一個機械化的筆形探針,並以此對固體樣品中散發出的揮發性有機化學物進行開放空間之採樣並製圖(稱之為「PENVOC」)。此PENVOC系統結合的真空輔助抽氣探針,串聯式質譜儀,及固定探針的機械手臂。在此研究計畫中,我們展示多種巨觀樣品的製圖如:水果、火腿、花朵、穿過的T恤、暴露在燒香中的口罩手套及起司等各種物質含有揮發性有機化合物。在第二個計畫中,我們開發一款可以便利且快速對人類表皮分泌的揮發性有機化合物製圖的儀器(第三章)。手持式探針包含壓力探針頭以及無線按鈕可以從表面取樣揮發性有機化合物,並讓揮發性有機化合物轉移到四極柱飛行時間質譜儀(Q-ToF-MS)。使用此手持式探針串聯質譜儀對九個健康的受試者採樣。採樣區域包含腋窩、前臂以及額頭。在最終測試中,其中一位受試者攝取葫蘆巴飲料,且在八小時的期間每隔一小時使用手持式探針對受試者採樣一次。我們相信這個分析方法可以用於代謝研究,還有進一步鑑定疾病生物標記後,可以用於非侵入式診斷。
Volatile organic compounds (VOCs) are found in abundance in both living and non-living objects. Normally, the VOCs are analyzed after homogenization and solvent extraction steps. However, this method does not allow for untargeted analysis of VOC spatial distribution in solid specimens. Visualizing the spatial distribution of VOCs enables localization of the sources of VOCs within a larger specimen. Thus, in the first project (Chapter 2), I present a robotized pen-shaped probe for open-space sampling and mapping of VOCs emanating from solid specimens (dubbed “PENVOC”). The setup of PENVOC incorporates a vacuum-assisted suction probe, tandem mass spectrometer, and robotic handling of the probe. We have shown mapping VOCs in various macroscopic specimens such as fruits, ham, flowers, worn T-shirts and masks, gloves exposed to burn incense, and cheese. In the second project, we developed “Mass Specthoscope” – a convenient tool for rapid sampling and detecting VOCs emitted by human skin (Chapter 3). The handheld probe with a pressurized tip and wireless button enables sampling VOCs from surfaces, and their transfer to the atmospheric pressure chemical ionization source of quadrupole time-of-flight mass spectrometer. Mass Specthoscope was characterized and implemented on the skin of healthy human participants. The sampling regions included armpit, forearm, and forehead. A study was also conducted on one participant who ingested a fenugreek drink, and the participant's skin surface was analyzed over an 8-hour period. We believe that this analytical approach can be used in metabolomic studies, and— following further identification of disease biomarkers—also in non-invasive diagnostics.
1. Kandiah, M.; Urban, P. L. Advances in Ultrasensitive Mass Spectrometry of Organic Molecules. Chem. Soc. Rev. 2013, 42, 5299– 5322.
2. Urban, P. L. Quantitative Mass Spectrometry: An Overview. Philos. Trans. R. Soc. A 2016, 374, 20150382.
3. Jannetto, P. J.; Fitzgerald, R. L. Effective Use of Mass Spectrometry in the Clinical Laboratory. Clin. Chem. 2016, 62, 92–98.
4. Prabhu, G. R. D.; Ponnusamy, V. K.; Witek, H. A.; Urban, P. L. Sample Flow Rate Scan in Electrospray Ionization Mass Spectrometry Reveals Alterations in Protein Charge State Distribution. Anal. Chem. 2020, 92, 13042–13049.
5. Brown, H. M.; McDaniel, T. J.; Fedick, P. W.; Mulligan, C. C. The Current Role of Mass Spectrometry in Forensics and Future Prospects. Anal. Methods 2020, 12, 3974–3997.
6. Wang, Y.; Sun, J.; Qiao, J.; Ouyang, J.; Na, N. A “Soft” and “Hard” Ionization Method for Comprehensive Studies of Molecules. Anal. Chem. 2018, 90, 14095–14099.
7. Zubarev, R. A.; Makarov, A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85, 5288–5296.
8. Roboz, J.; A History of Ion Current Detectors for Mass Spectrometry. In The Encyclopedia of Mass Spectrometry; Gross, M. L.; Richard M. Caprioli, R. M., Eds; Elsevier, 2016; pp 183–188.
9. Bowman, A. P.; Blakney, G. T.; Hendrickson, C. L.; Ellis, S. R.; Heeren, R. M. A.; Smith, D. F. Ultra-High Mass Resolving Power, Mass Accuracy, and Dynamic Range MALDI Mass Spectrometry Imaging by 21-T FT-ICR MS. Anal. Chem. 2020, 92, 3133–3142.
10. Mastovska, K.; Lehotay, S. J. Practical Approaches to Fast Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2003, 1000, 153–180.
11. Thomas, S. N.; Mass Spectrometry. In Contemporary Practice in Clinical Chemistry, 4th ed.; Academic Press, 2019; pp 171–185.
12. Schäfer, M.; Mass Spectrometry | Fundamentals and Instrumentation, 3rd ed.; Academic Press, 2019; pp 358–365.
13. Paré, J. R. J.; Yaylayan, V.; Mass Spectrometry: Principles and Applications. In Instrumental Methods in Food Analysis; Paré, J. R. J.; Bélanger, J. M. R. Eds.; Elsevier, 1997; pp 239–266.
14. Patel, K. N.; Patel, J. K.; Patel, M. P.; Rajput, G. C.; Patel, H. A.; Introduction to Hyphenated Techniques and Their Applications in Pharmacy. Pharm. Methods 2010, 1, 2–13.
15. Greef, J. Van der; Niessen, W. M. A. Hyphenated Methods in Mass Spectrometry. Int. J. Mass Spectrom. Ion Process 1992, 118–119, 857–873.
16. Kelly, R. T.; Tolmachev, A. V; Page, J. S.; Tang, K.; Smith, R. D. The Ion Funnel: Theory, Implementations and Application. Mass Spectrom. Rev. 2010, 29, 294–312.
17. Hoffmann, E. de; Stroobant, Vincent. Mass Spectrometry: Principles and Applications, 3rd ed.; John Wiley & Sons, 2007.
18. Domin, M.; Cody, R. An Introduction to Ambient Ionization Mass Spectrometry. In Ambient Ionization Mass Spectrometry; Royal Society of Chemistry, 2014; pp 1–22.
19. Urban, P. L.; Chen, Y.-C.; Wang, Y.-S. Time-Resolved Mass Spectrometry: From Concept to Applications; Wiley: Chichester, 2016.
20. Watson, J.T. and Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley & Sons, 2007.
21. Gross, J. H. Mass Spectrometry | Electron Impact and Chemical Ionization, 3rd ed.; Elsevier Inc., 2018.
22. Steckel, A.; Schlosser, G. An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation. Molecules 2019, 24, 1–11.
23. Harvey, D. J. Mass Spectrometry | Ionization Methods Overview. In Encyclopedia of Analytical Science; Academic Press, 2019; pp 398–410.
24. Eljarrat, E.; Barcelo, D. Mass Spectrometry | Electron Impact and Chemical Ionization. In Encyclopedia of Analytical Science; Elsevier, 2005; pp 359–366.
25. Budzikiewicz, H. Negative Chemical Ionization (NCI) of Organic Compounds. Mass Spectrom. Rev. 1986, 5, 345–380.
26. Dougherty, R. C. Negative Chemical Ionization Mass Spectrometry. Anal. Chem. 1981, 53, 625–636.
27. Dougherty, R. C. Negative Chemical Ionization Mass Spectrometry: Applications in Environmental Analytical Chemistry. Biol. Mass Spectrom. 1981, 8, 283–292.
28. Poole., C. F. Spectroscopic Detectors for Identification and Quantification. In The Essence of Chromatography; Elsevier, 2003; pp 719–792.
29. Banerjee, Shibdas.; and; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 1–40.
30. Sundberg, B. N.; Lagalante, A. F. Coaxial Electrospray Ionization for the Study of Rapid In-Source Chemistry. J. Am. Soc. Mass Spectrom. 2018, 29, 2023–2029.
31. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S. Unraveling the Mechanism of Electrospray Ionization. Anal. Chem. 2013, 85, 2–9.
32. Kebarle, Paul; and Verkerk, Udo. H. Electrospray: From Ions in Solution to Ions in The Gas Phase, What We Know Now. Mass Spectrom. Rev. 2009, 28, 898–917.
33. Skoog, D. A.; Holler, J. F.; Crouch, S. R. Atomic Absorption and Atomic Fluorescence Spectrometry. In Principles of Instrumental Analysis; Cengage Learning, 2018; pp 210–230.
34. Ikonomou, M. G.; Blades, A. T.; Kebarle, P. Electrospray-Ion Spray: A Comparison of Mechanisms and Performance. Anal. Chem. 1991, 63, 1989–1998.
35. Crooks, P. A.; Byrd, G. D.; Company, R. J. R. T.; Division, B. C. High-Performance Liquid Chromatographic-Mass Spectrometric. No. Lc.
36. Koster, Chris G. de, and Schoenmakers, P. J. History of Liquid Chromatography—Mass Spectrometry Couplings. In Hyphenations of Capillary Chromatography with Mass Spectrometry; Elsevier, 2020; pp 279–295.
37. Rockwood, A. L.; Kushnir, M. M.; Clarke, N. J. Mass Spectrometry. In Principles and Applications of Clinical Mass Spectrometry; Elsevier, 2018; pp 33–65.
38. Siuzdak, G. An Introduction to Mass Spectrometry Ionization: An Excerpt from The Expanding Role of Mass Spectrometry in Biotechnology, 2nd Ed.; MCC Press: San Diego, 2005. JALA. 2004, 9, 50–63.
39. Gilbert, J. R.; McCaskill, D.; Fishman, V. N.; Brzak, K.; Markham, D.; Bartels, M. J.; Winniford, B.; Bano Mohsin, S.; Godbey, J.; Akinbo, O.; Lewer, P. Industrial Applications of High-Resolution GC/MS. In Comprehensive Analytical Chemistry; Elsevier, 2013; Vol. 61, pp 403–429.
40. Pereira, I.; de Aguiar, D. V. A.; Vasconselos, G.; Vaz, B. G. Fourier Transform Mass Spectrometry Applied to Petroleomics. In Fundamentals and Applications of Fourier Transform Mass Spectrometry; Elsevier, 2019; pp 509–528.
41. Fang, J.; Zhao, H.; Zhang, Y.; Lu, M.; Cai, Z. Atmospheric Pressure Chemical Ionization in Gas Chromatography-Mass Spectrometry for the Analysis of Persistent Organic Pollutants. Trends Environ. Anal. Chem. 2020, 25, e00076.
42. Jennings, K. R.; Dolnikowski, G. G. Mass Analyzers. In Methods in Enzymology; Academic Press, 1990; Vol. 193, pp 37–61.
43. Glish, G. L.; Burinsky, D. J. Hybrid Mass Spectrometers for Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 161–172.
44. Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.
45. Brunnée, C. The Ideal Mass Analyzer: Fact or Fiction? Int. J. Mass Spectrom. Ion Process 1987, 76, 125–237.
46. Mellon, F. A. Mass Spectrometry | Principles and Instrumentation. In Encyclopedia of Food Sciences and Nutrition; Academic Press, 2003; pp 3739–3749.
47. Somogyi, Á. Mass Spectrometry Instrumentation and Techniques. In Medical Applications of Mass Spectrometry; Elsevier B.V., 2008; pp 93–140.
48. Dass, C. Tandem Mass Spectrometry. In Fundamentals of Contemporary Mass Spectrometry; John Wiley & Sons, 2006; pp 119–150.
49. Johnson, J. V.; Yost, R. A.; Kelley, P. E.; Bradford, D. C. Tandem-in-Space and Tandem-in-Time Mass Spectrometry: Triple Quadrupoles and Quadrupole Ion Traps. Anal. Chem. 1990, 62, 2162–2172.
50. Hoffmann, E. de. Tandem Mass Spectrometry: A Primer. J. Mass Spectrom. 1996, 31, 129–137.
51. Herrero, P.; Cortés-Francisco, N.; Borrull, F.; Caixach, J.; Pocurull, E.; Marcé, R. M. Comparison of Triple Quadrupole Mass Spectrometry and Orbitrap High-Resolution Mass Spectrometry in Ultrahigh Performance Liquid Chromatography for the Determination of Veterinary Drugs in Sewage: Benefits and Drawbacks. J. Mass Spectrom. 2014, 49, 585–596.
52. Kaklamanos, G.; Aprea, E.; Theodoridis, G. Mass Spectrometry: Principles and Instrumentation. In Encyclopedia of Food and Health; Academic Press, 2016; pp 661–668.
53. Dennis, E. A.; Gundlach-Graham, A. W.; Ray, S. J.; Enke, C. G.; Hieftje, G. M. Distance-of-Flight Mass Spectrometry: What, Why, and How? J. Am. Soc. Mass Spectrom. 2016, 27, 1772–1786.
54. Stewart, D.; Dhungana, S.; Clark, R.; Pathmasiri, W.; McRitchie, S.; Sumner, S. Omics Technologies Used in Systems Biology. In Systems Biology in Toxicology and Environmental Health; Academic Press, 2015; pp 57–83.
55. Kaklamanos, G.; Aprea, E.; Theodoridis, G. Mass Spectrometry: Principles and Instrumentation. In Chemical Analysis of Food; Academic Press, 2020; pp 525–552.
56. Doroshenko, V. M.; Cotter, R. J. Ideal Velocity Focusing in a Reflectron Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1999, 10, 992–999.
57. Niessen, W. M. A. MS–MS and MSn. In Encyclopedia of Spectroscopy and Spectrometry; Academic Press, 2017; pp 936–941.
58. Boesl, U. Time-of-Flight Mass Spectrometry: Introduction to the Basics. Mass Spectrom. Rev. 2016, 36, 86–109.
59. Bae, Y. J.; Yoon, S. H.; Moon, J. H.; Kim, M. S. Optimization of Reflectron for Kinetic and Mechanistic Studies with Multiplexed Multiple Tandem (MSn) Time-of-Flight Mass Spectrometry. Bull Korean Chem. Soc. 2010, 31, 92–99.
60. Wang, C.-C.; Lai, Y.-H.; Ou, Y.-M.; Chang, H.-T.; Wang, Y.-S. Critical Factors Determining the Quantification Capability of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry. Philos. Trans. Royal Soc. A 2016, 374, 20150371.
61. McDonnell, L. A.; Heeren, R. M. A. Imaging Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 606–643.
62. Aichler, M.; Walch, A. MALDI Imaging Mass Spectrometry: Current Frontiers and Perspectives in Pathology Research and Practice. Lab. Invest. 2015, 95, 422–431.
63. Torres‐sangiao, E.; Rodriguez, C. L.; García‐riestra, C. Application and Perspectives of Maldi–Tof Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021, 9, 1–19.
64. Raharimalala, F. N.; Andrianinarivomanana, T. M.; Rakotondrasoa, A.; Collard, J. M.; Boyer, S. Usefulness and Accuracy of MALDI-TOF Mass Spectrometry as a Supplementary Tool to Identify Mosquito Vector Species and to Invest in Development of International Database. Med. Vet. Entomol. 2017, 31, 289–298.
65. Tran, A.; Alby, K.; Kerr, A.; Jones, M.; Gilligan, P. H. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2015, 53, 2473–2479.
66. Gemoll, T.; Roblick, U. J.; Habermann, J. K. MALDI Mass Spectrometry Imaging in Oncology (Review). Mol. Med. Rep. 2011, 4, 1045–1051.
67. Ifa, D. R.; Wu, C.; Ouyang, Z.; Cooks, R. G. Desorption Electrospray Ionization and Other Ambient Ionization Methods: Current Progress and Preview. Analyst 2010, 135, 669–681.
68. Bokhart, Mark. T.; Muddiman, D. C. Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging Analysis of Biospecimens. Analyst 2016, 141, 5236–5245.
69. Claude, E.; A.Jones, E.; D.Pringle, S. DESI Mass Spectrometry Imaging (MSI). In Imaging Mass Spectrometry (Methods and Protocols); Humana Press, 2017; pp 65–75.
70. Hove, E. R. A.; Smith, D. F.; Heeren, Ro. M. A. A Concise Review of Mass Spectrometry Imaging. J. Chromatogr. A 2010, 1217, 3946–3954.
71. Chabala, J. M.; Soni, K. K.; Li, J.; Gavrilov, K. L.; Levi-Setti, R. High-Resolution Chemical Imaging with Scanning Ion Probe SIMS. Int. J. Mass Spectrom. Ion Process 1995, 143, 191–212.
72. Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health 2018, 84, 225–238.
73. Williams, J.; Koppmann, R. Volatile Organic Compounds in the Atmosphere: An Overview. In Volatile Organic Compounds in the Atmosphere; Koppmann, R., Ed.; Blackwell Publishing, 2007; pp 1–32.
74. Lan, H.; Hartonen, K.; Riekkola, M. L. Miniaturised Air Sampling Techniques for Analysis of Volatile Organic Compounds in Air. TrAC-Trends Anal. Chem. 2020, 126, 115873.
75. Ramírez, N.; Cuadras, A.; Rovira, E.; Borrull, F.; Marcé, R. M. Comparative Study of Solvent Extraction and Thermal Desorption Methods for Determining a Wide Range of Volatile Organic Compounds in Ambient Air. Talanta 2010, 82, 719–727.
76. Santos, F. J.; Galceran, M. T. Modern Developments in Gas Chromatography-Mass Spectrometry-Based Environmental Analysis. J. Chromatogr. A. 2003, 1000, 125–151.
77. Xue, B.; Sun, L.; Huang, Z.; Gao, W.; Fan, R.; Cheng, P.; Ding, L.; Ma, L.; Zhou, Z. A Hand-Portable Digital Linear Ion Trap Mass Spectrometer. Analyst 2016, 141, 5535–5542.
78. Yu, Q.; Xu, S.; Shi, W.; Tian, Y.; Wang, X. Mass Spectrometry Coupled with Vacuum Thermal Desorption for Enhanced Volatile Organic Sample Analysis. Anal. Methods 2020, 12, 1852–1857.
79. Bruderer, T.; Gaugg, M. T.; Cappellin, L.; Lopez-Hilfiker, F.; Hutterli, M.; Perkins, N.; Zenobi, R.; Moeller, A. Detection of Volatile Organic Compounds with Secondary Electrospray Ionization and Proton Transfer Reaction High-Resolution Mass Spectrometry: A Feature Comparison. J. Am. Soc. Mass Spectrom. 2020, 31, 1632–1640.
80. Perez-Hurtado, P.; Palmer, E.; Owen, T.; Aldcroft, C.; Allen, M. H.; Jones, J.; Creaser, C. S.; Lindley, M. R.; Turner, M. A.; Reynolds, J. C. Direct Analysis of Volatile Organic Compounds in Foods by Headspace Extraction Atmospheric Pressure Chemical Ionisation Mass Spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 1947–1956.
81. Badjagbo, K.; Picard, P.; Moore, S.; Sauvé, S. Direct Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry for the Continuous Real-Time Trace Analysis of Benzene, Toluene, Ethylbenzene, and Xylenes in Ambient Air. J. Am. Soc. Mass Spectrom. 2009, 20, 829–836.
82. Blake, R. S.; Monks, P. S.; Ellis, A. M. Proton-Transfer Reaction Mass Spectrometry. Chem. Rev. 2009, 109, 861–896.
83. Senthilmohan, S. T.; McEwan, M. J.; Wilson, P. F.; Milligan, D. B.; Freeman, C. G. Real Time Analysis of Breath Volatiles Using SIFT-MS in Cigarette Smoking. Redox Rep. 2001, 6, 185–187.
84. Duffy, E.; Albero, G.; Morrin, A. Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin. Cosmetics 2018, 5, 62.
85. Kolarsick, P. A.; Kolarsick, M. A.; Goodwin, C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses Assoc. 2011, 3, 203–213.
86. Duffy, E.; Morrin, A. Endogenous and Microbial Volatile Organic Compounds in Cutaneous Health and Disease. TrAC - Trends Anal. Chem. 2019, 111, 163–172.
87. Jha, S. Kr. Characterization of Human Body Odor and Identification of Aldehydes Using Chemical Sensor. Rev. Anal. Chem. 2017, 36.
88. Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human Exhaled Air Analytics: Biomarkers of Diseases. Biomed. Chromatogr. 2007, 21, 553–566.
89. Boots, A. W.; Van Berkel, J. J. B. N.; Dallinga, J. W.; Smolinska, A.; Wouters, E. F.; Van Schooten, F. J. The Versatile Use of Exhaled Volatile Organic Compounds in Human Health and Disease. J. Breath Res. 2012, 6, 027108.
90. Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomark. 2015, 2015, 1–16.
91. Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R. N. Variation in Volatile Organic Compounds in the Breath of Normal Humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88.
92. Francesco, F. D.; Fuoco, R.; Trivella, M. G.; Ceccarini, A. Breath Analysis: Trends in Techniques and Clinical Applications. Microchem. J. 2005, 79, 405–410.
93. Baker, L. B. Physiology of Sweat Gland Function: The Roles of Sweating and Sweat Composition in Human Health. Temperature 2019, 6, 211–259.
94. Chen, Y. L.; Kuan, W. H.; Liu, C. L. Comparative Study of the Composition of Sweat from Eccrine and Apocrine Sweat Glands during Exercise and in Heat. Int J. Environ. Res. Public Health 2020, 17, 3377–3387.
95. Gallagher, M.; Wysocki, C. J.; Leyden, J. J.; Spielman, A. I.; Sun, X.; Preti, G. Analyses of Volatile Organic Compounds from Human Skin. Br. J. Dermatol. 2008, 159, 780–791.
96. Rittié, L.; Sachs, D. L.; Orringer, J. S.; Voorhees, J. J.; Fisher, G. J. Eccrine Sweat Glands Are Major Contributors to Reepithelialization of Human Wounds. Am. J. Pathol. 2013, 182, 163–171.
97. Makrantonaki, E.; Ganceviciene, R.; Zouboulis, C. An Update on the Role of the Sebaceous Gland in the Pathogenesis of Acne. Dermatoendocrinol 2011, 3, 41–49.
98. Kamal, M. H. M.; Zakaria, Y.; Isa, M. L. M.; Hassan, N. F. N. Chemical Profiling of Volatile Organic Compounds from Shoe Odour for Personal Identification. Egypt J. Forensic Sci. 2020, 10, 1–10.
99. Curran, A. M.; Ramirez, C. F.; Schoon, A. A.; Furton, K. G. The Frequency of Occurrence and Discriminatory Power of Compounds Found in Human Scent across a Population Determined by SPME-GC/MS. J. Chromatogr. B 2007, 846, 86–97.
100. Goetz, N.; Kaba, G.; Good, D.; Hussler, G.; Bore, P. Detection and Identification of Volatile Compounds Evolved from Human Hair and Scalp Using Headscape Gas Chromatography. J. Soc.Cosmet. Chem. 1988, 39, 1–13.
101. Curran, A. M.; Rabin, S. I.; Prada, P. A.; Furton, K. G. Comparison of the Volatile Organic Compounds Present in Human Odor Using SPME-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619.
102. Byrd, A. L.; Belkaid, Y.; Segre, J. A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155.
103. Swaney, M. H.; Kalan, L. R. Living in Your Skin: Microbes, Molecules, and Mechanisms. Infect. Immun. 2021, 89.
104. James, A. G.; Austin, C. J.; Cox, D. S.; Taylor, D.; Calvert, R. Microbiological and Biochemical Origins of Human Axillary Odour. FEMS Microbiol. Ecol. 2013, 83, 527–540.
105. Prokop-Prigge, K. A.; Greene, K.; Varallo, L.; Wysocki, C. J.; Preti, G. The Effect of Ethnicity on Human Axillary Odorant Production. J. Chem. Ecol. 2016, 42, 33–39.
106. Pinto, N.; Eileen Dolan, M. Clinically Relevant Genetic Variations in Drug Metabolizing Enzymes. Curr. Drug Metab. 2011, 12, 487–497.
107. Conte, M.; Conte, G.; Salvioli, S. VOCs Profile Can Discriminate Biological Age. Aging 2021, 13, 9156–9157.
108. Zuniga, A.; Stevenson, R. J.; Mahmut, M. K.; Stephen, I. D. Diet Quality and the Attractiveness of Male Body Odor. Evol. Hum. Behav. 2017, 38, 136–143.
109. Mogilnicka, I.; Bogucki, P.; Ufnal, M. Microbiota and Malodor—Etiology and Management. Int. J. Mol. Sci. 2020, 21, 2886.
110. Lanzalaco, A.; Vanoosthuyze, K.; Stark, C.; Swaile, D.; Rocchetta, H.; Spruell, R. A Comparative Clinical Study of Different Hair Removal Procedures and Their Impact on Axillary Odor Reduction in Men. J. Cosmet. Dermatol. 2016, 15, 58–65.
111. Mitra, A.; Choi, S.; Boshier, P. R.; Razumovskaya-Hough, A.; Belluomo, I.; Spanel, P.; Hanna, G. B. The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis. Metabolites 2022, 12, 824.
112. Lenochová, P.; Vohnoutová, P.; Roberts, S. C.; Oberzaucher, E.; Grammer, K.; Havlíček, J. Psychology of Fragrance Use: Perception of Individual Odor and Perfume Blends Reveals a Mechanism for Idiosyncratic Effects on Fragrance Choice. PLoS One 2012, 7, e33810.
113. Mitro, S.; Gordon, A. R.; Olsson, M. J.; Lundström, J. N. The Smell of Age: Perception and Discrimination of Body Odors of Different Ages. PLoS One 2012, 7, e38110.
114. Haze, S.; Gozu, Y.; Nakamura, S.; Kohno, Y.; Sawano, K.; Ohta, H.; Yamazaki, K. 2-Nonenal Newly Found in Human Body Odor Tends to Increase with Aging. J. Invest. Dermatol. 2001, 116, 520–524.
115. Broza, Y. Y.; Zuri, L.; Haick, H. Combined Volatolomics for Monitoring of Human Body Chemistry. Sci. Rep. 2014, 4, 4611.
116. Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G. A.; Alam, M. N.; Boyacl, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360.
117. Liu, S.; Li, R.; Wild, R. J.; Warneke, C.; de Gouw, J. A.; Brown, S. S.; Miller, S. L.; Luongo, J. C.; Jimenez, J. L.; Ziemann, P. J. Contribution of Human-Related Sources to Indoor Volatile Organic Compounds in a University Classroom. Indoor Air 2016, 26, 925–938.
118. Turner, C.; Parekh, B.; Walton, C.; Španěl, P.; Smith, D.; Evans, M. An Exploratory Comparative Study of Volatile Compounds in Exhaled Breath and Emitted by Skin Using Selected Ion Flow Tube Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 526–532.
119. Mochalski, P.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Monitoring of Selected Skin-Borne Volatile Markers of Entrapped Humans by Selective Reagent Ionization Time of Flight Mass Spectrometry in NO + Mode. Anal. Chem. 2014, 86, 3915–3923.
120. Ruzsanyi, V.; Wiesenhofer, H.; Ager, C.; Herbig, J.; Aumayr, G.; Fischer, M.; Renzler, M.; Ussmueller, T.; Lindner, K.; Mayhew, C. A. A Portable Sensor System for the Detection of Human Volatile Compounds against Transnational Crime. Sens. Actuator B-Chem. 2021, 328, 129036.
121. Santos, J. P.; Aleixandre, M.; Cruz, C. Hand Held Electronic Nose for VOC Detection. Chem. Eng. Trans. 2012, 30, 181–186.
122. Sharma, A.; Kumar, R.; Varadwaj, P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol. Diagn. Ther. 2023, 27, 321–347.
123. Chen, C.-H.; Chen, T.-C.; Zhou, X.; Kline-Schoder, R.; Sorensen, P.; Cooks, R. G.; Ouyang, Z. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems. J. Am. Soc. Mass Spectrom. 2015, 26, 240–247.
124. Woolman, M.; Qiu, J.; Kuzan-Fischer, C. M.; Ferry, I.; Dara, D.; Katz, L.; Daud, F.; Wu, M.; Ventura, M.; Bernards, N.; Chan, H.; Fricke, I.; Zaidi, M.; Wouters, B. G.; Rutka, J. T.; Das, S.; Irish, J.; Weersink, R.; Ginsberg, H. J.; Jaffray, D. A.; Zarrine-Afsar, A. In Situ Tissue Pathology from Spatially Encoded Mass Spectrometry Classifiers Visualized in Real Time through Augmented Reality. Chem. Sci. 2020, 11, 8723–8735.
125. Senesi, G. S.; Harmon, R. S.; Hark, R. R. Field-Portable and Handheld Laser-Induced Breakdown Spectroscopy: Historical Review, Current Status and Future Prospects. Spectroc. Acta Pt. B-Atom. Spectr. 2021, 175, 106013.
126. Wen, X.; Zhang, D.; Li, X.; Ding, T.; Liang, C.; Zheng, X.; Yang, W.; Hou, C. Dynamic Changes of Bacteria and Screening of Potential Spoilage Markers of Lamb in Aerobic and Vacuum Packaging. Food Microbiol. 2022, 104, 103996.
127. Lotz, F.; Baar, P.; Spengler, B.; Schulz, S. Development of a Handheld Liquid Extraction Pen for On-Site Mass Spectrometric Analysis of Daily Goods. Analyst 2021, 146, 3004–3015.
128. Zhang, J.; Rector, J.; Lin, J. Q.; Young, J. H.; Sans, M.; Katta, N.; Giese, N.; Yu, W.; Nagi, C.; Suliburk, J.; Liu, J.; Bensussan, A.; DeHoog, R. J.; Garza, K. Y.; Ludolph, B.; Sorace, A. G.; Syed, A.; Zahedivash, A.; Milner, T. E.; Eberlin, L. S. Nondestructive Tissue Analysis for Ex Vivo and in Vivo Cancer Diagnosis Using a Handheld Mass Spectrometry System. Sci. Transl. Med. 2017, 9, eaan3968.
129. Li, J.; Lu, Y.; Xu, Y.; Liu, C.; Tu, Y.; Ye, S.; Liu, H.; Xie, Y.; Qian, H.; Zhu, X. AIR-Chem: Authentic Intelligent Robotics for Chemistry. J. Phys. Chem. A 2018, 122, 9142–9148.
130. Karki, S.; Meher, A. K.; Inutan, E. D.; Pophristic, M.; Marshall, D. D.; Rackers, K.; Trimpin, S.; McEwen, C. N. Development of a Robotics Platform for Automated Multi-Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2021, 35, 1–11.
131. Berkel, G. J. Van; Kertesz, V. Rapid Sample Classification Using an Open Port Sampling Interface Coupled with Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 281–291.
132. Raj, M.; Seamans, R. Primer on Artificial Intelligence and Robotics. J. Organ. Des. 2019, 8, 1–14.
133. Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.; Wang, X.; Li, X.; Alston, B. M.; Li, B.; Clowes, R.; Rankin, N.; Harris, B.; Sprick, R. S.; Cooper, A. I. A Mobile Robotic Chemist. Nature 2020, 583, 237–241.
134. Chiu, S.-H.; Urban, P. L. Robotics-Assisted Mass Spectrometry Assay Platform Enabled by Open-Source Electronics. Biosens. Bioelectron. 2015, 64, 260–268.
135. Keating, M. F.; Zhang, J.; Feider, C. L.; Retailleau, S.; Reid, R.; Antaris, A.; Hart, B.; Tan, G.; Milner, T. E.; Miller, K.; Eberlin, L. S. Integrating the MasSpec Pen to the Da Vinci Surgical System for in Vivo Tissue Analysis during a Robotic Assisted Porcine Surgery. Anal. Chem. 2020, 92, 11535–11542.
136. Dettmer-Wilde, K.; Engewald, W. Introduction. In Practical Gas Chromatography: A Comprehensive Reference; Springer, 2014; pp 3–20.
137. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S.; Wohlgemuth, G.; Barupal, D. K.; Showalter, M. R.; Arita, M.; Fiehn, O. Identification of Small Molecules Using Accurate Mass MS/MS Search. Mass Spectrom. Rev. 2018, 37, 513–532.
138. Chen, Y. C.; Urban, P. L. Time-Resolved Mass Spectrometry. TrAC - Trends Anal. Chem. 2013, 44, 106–120.
139. Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Ambient Mass Spectrometry. Science (1979) 2006, 311, 1566–1570.
140. Feider, C. L.; Krieger, A.; Dehoog, R. J.; Eberlin, L. S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290.
141. Zhu, L.; Gamez, G.; Chen, H. W.; Huang, H. X.; Chingin, K.; Zenobi, R. Real-Time, on-Line Monitoring of Organic Chemical Reactions Using Extractive Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2993–2998.
142. Cheng, S.; Wu, Q.; Xiao, H.; Chen, H. Online Monitoring of Enzymatic Reactions Using Time-Resolved Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2017, 89, 2338–2344.
143. Brown, T. A.; Chen, H.; Zare, R. N. Identification of Fleeting Electrochemical Reaction Intermediates Using Desorption Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 2015, 137, 7274–7277.
144. Simmons, D. A.; Konermann, L. Characterization of Transient Protein Folding Intermediates during Myoglobin Reconstitution by Time-Resolved Electrospray Mass Spectrometry with on-Line Isotopic Pulse Labeling. Biochemistry 2002, 41, 1906–1914.
145. Hänel, L.; Kwiatkowski, M.; Heikaus, L.; Schlüter, H. Mass Spectrometry-Based Intraoperative Tumor Diagnostics. Future Sci. OA 2019, 5.
146. Rioseras, A. T.; Gomez, D. G.; Ebert, B. E.; Blank, L. M.; Ibáñez, A. J.; Sinues, P. M. L. Comprehensive Real-Time Analysis of the Yeast Volatilome. Sci. Rep. 2017, 7, 1–9.
147. Chang, C. H.; Urban, P. L. Automated Dual-Chamber Sampling System to Follow Dynamics of Volatile Organic Compounds Emitted by Biological Specimens. Anal. Chem. 2018, 90, 13848–13854.
148. Barrios-Collado, C.; García-Gómez, D.; Zenobi, R.; Vidal-De-Miguel, G.; Ibáñez, A. J.; Martinez-Lozano Sinues, P. Capturing in Vivo Plant Metabolism by Real-Time Analysis of Low to High Molecular Weight Volatiles. Anal. Chem. 2016, 88, 2406–2412.
149. Li, X.; Martinez-Lozano Sinues, P.; Dallmann, R.; Bregy, L.; Hollmén, M.; Proulx, S.; Brown, S. A.; Detmar, M.; Kohler, M.; Zenobi, R. Drug Pharmacokinetics Determined by Real-Time Analysis of Mouse Breath. Angew. Chem. Int. Ed. 2015, 54, 7815–7818.
150. Sinues, P. M.-L.; Meier, L.; Berchtold, C.; Ivanov, M.; Sievi, N.; Camen, G.; Kohler, M.; Zenobi, R. Breath Analysis in Real Time by Mass Spectrometry in Chronic Obstructive Pulmonary Disease. Respiration 2014, 87, 301–310.
151. Tzafetas, M.; Mitra, A.; Paraskevaidi, M.; Bodai, Z.; Kalliala, I.; Bowden, S.; Lathouras, K.; Rosini, F.; Szasz, M.; Savage, A.; Balog, J.; McKenzie, J.; Lyons, D.; Bennett, P.; MacIntyre, D.; Ghaem-Maghami, S.; Takats, Z.; Kyrgiou, M. The Intelligent Knife (IKnife) and Its Intraoperative Diagnostic Advantage for the Treatment of Cervical Disease. Proc. Natl. Acad. Sci. U.S.A 2020, 117, 7338–7346.
152. Schwamborn, K.; Caprioli, R. M. Molecular Imaging by Mass Spectrometry-Looking beyond Classical Histology. Nat. Rev. Cancer 2010, 10, 639–646.
153. Li, N.; Nie, H.; Jiang, L.; Ruan, G.; Du, F.; Liu, H. Recent Advances of Ambient Ionization Mass Spectrometry Imaging in Clinical Research. J. Sep. Sci. 2020, 43, 3146–3163.
154. Buchberger, A. R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal. Chem. 2018, 90, 240–265.
155. Caprioli, R. M. Imaging Mass Spectrometry: A Perspective. J. Biomol. Tech. 2019, 30, 7–11.
156. Massonnet, P.; Heeren, R. M. A. A Concise Tutorial Review of TOF-SIMS Based Molecular and Cellular Imaging. J. Anal. At Spectrom. 2019, 34, 2217–2228.
157. Wiseman, J. M.; Ifa, D. R.; Song, Q.; Cooks, R. G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem. Int. Ed. 2006, 45, 7188–7192.
158. Maldonado-Torres, M.; López-Hernández, J. F.; Jiménez-Sandoval, P.; Winkler, R. “Plug and Play” Assembly of a Low-Temperature Plasma Ionization Mass Spectrometry Imaging (LTP-MSI) System. J. Proteomics 2014, 102, 60–65.
159. Lanekoff, I.; Laskin, J. Imaging of Lipids and Metabolites Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. In Methods in Molecular Biology (Methods and Protocols); Humana Press, 2014; pp 99–106.
160. Feider, C. L.; Elizondo, N.; Eberlin, L. S. Ambient Ionization and FAIMS Mass Spectrometry for Enhanced Imaging of Multiply Charged Molecular Ions in Biological Tissues. Anal. Chem. 2016, 88, 11533–11541.
161. Bennett, R. V.; Morzan, E. M.; Huckaby, J. O.; Monge, M. E.; Christensen, H. I.; Fernández, F. M. Robotic Plasma Probe Ionization Mass Spectrometry (RoPPI-MS) of Non-Planar Surfaces. Analyst 2014, 139, 2658–2662.
162. Li, A.; Paine, M. R. L.; Zambrzycki, S.; Stryffeler, R. B.; Wu, J.; Bouza, M.; Huckaby, J.; Chang, C. Y.; Kumar, M.; Mukhija, P.; Fernández, F. M. Robotic Surface Analysis Mass Spectrometry (RoSA-MS) of Three-Dimensional Objects. Anal. Chem. 2018, 90, 3981–3986.
163. Elpa, D. P.; Prabhu, G. R. D.; Wu, S. P.; Tay, K. S.; Urban, P. L. Automation of Mass Spectrometric Detection of Analytes and Related Workflows: A Review. Talanta 2019, 208, 120304.
164. Urban, P. L. Prototyping Instruments for the Chemical Laboratory Using Inexpensive Electronic Modules. Angew. Chem. Int. Ed. 2018, 57, 11074–11077.
165. Prabhu, G. R. D.; Yang, T.-H.; Hsu, C.-Y.; Shih, C.-P.; Chang, C.-M.; Liao, P.-H.; Ni, H.-T.; Urban, P. L. Facilitating Chemical and Biochemical Experiments with Electronic Microcontrollers and Single-Board Computers. Nat. Protoc. 2020, 15, 925–990.
166. Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120, 9482–9553.
167. Davis, J. J.; Foster, S. W.; Grinias, J. P. Low-Cost and Open-Source Strategies for Chemical Separations. J. Chromatogr. A 2021, 1638, 461820.
168. Cao, Y.; Wang, J.; Germinara, G. S.; Wang, L.; Yang, H.; Gao, Y.; Li, C. Behavioral Responses of Thrips Hawaiiensis (Thysanoptera: Thripidae) to Volatile Compounds Identified from Gardenia Jasminoides Ellis (Gentianales: Rubiaceae). Insects 2020, 11, 1–11.
169. Aros, D.; Garrido, N.; Rivas, C.; Medel, M.; Müller, C.; Rogers, H.; Úbeda, C. Floral Scent Evaluation of Three Cut Flowers through Sensorial and Gas Chromatography Analysis. Agronomy 2020, 10, 1–14.
170. Pyridine. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Industrial Chemicals. International Agency for Research on Cancer; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Lyon (FR). 2000; No. 77, https://www.ncbi.nlm.nih.gov/books/NBK390836/ (accessed 2020-12-15).
171. Yang, T. T.; Lin, T. S.; Chang, M. Characteristics of Emissions of Volatile Organic Compounds from Smoldering Incense. Bull Environ Contam. Toxicol. 2007, 78, 308–313.
172. Sarıkoç, S. Fuels of the Diesel-Gasoline Engines and Their Properties. Diesel and Gasoline Engines Viskup, R., Ed.; IntechOpen, 2020. https://www.intechopen.com/books/diesel-and-gasoline-engines/fuels-of-the-diesel-gasoline-engines-and-their-properties (accessed 2020-10-20).
173. Raninen, K. J.; Lappi, J. E.; Mukkala, M. L.; Tuomainen, T.-P.; Mykkänen, H. M.; Poutanen, K. S.; Raatikainen, O. J. Fiber Content of Diet Affects Exhaled Breath Volatiles in Fasting and Postprandial State in a Pilot Crossover Study. Nutr. Res. 2016, 36, 612– 619.
174. Xu, Z. Q.; Broza, Y. Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S.; Sun, G. P.; Chen, Z. D.; Leja, M.; Haick, H. A Nanomaterial-Based Breath Test for Distinguishing Gastric Cancer from Benign Gastric Conditions. Br. J. Cancer 2013, 108, 941–950.
175. Gisler, A.; Lan, J.; Singh, K. D.; Usemann, J.; Frey, U.; Zenobi, R.; Sinues, P. Real-Time Breath Analysis of Exhaled Compounds upon Peppermint Oil Ingestion by Secondary Electrospray Ionization-High Resolution Mass Spectrometry: Technical Aspects. J. Breath Res. 2020, 14.
176. Oser, B. L.; Ford, R. A. Recent Progress in the Consideration of Flavoring Ingredients Under the Food Additives Amendment. Food Technol. 1977, 24, 65–74.
177. Jollivet, N.; Belin, J.-M. Comparison of Volatile Flavor Compounds Produced by Ten Strains of Penicillium Camemberti Thom. J. Dairy Sci. 1993, 76, 1837–1844.
178. Kruis, A. J.; Bohnenkamp, A. C.; Patinios, C.; van Nuland, Y. M.; Levisson, M.; Mars, A. E.; van den Berg, C.; Kengen, S. W. M.; Weusthuis, R. A. Microbial Production of Short and Medium Chain Esters: Enzymes, Pathways, and Applications. Biotechnol. Adv. 2019, 37, 107407.
179. Hou, J.; Liang, L.; Wang, Y. Volatile Composition Changes in Navel Orange at Different Growth Stages by HS-SPME-GC-MS. Food Res. Int. 2020, 136, 109333.
180. Shih, C.-P.; Yu, K.-C.; Ou, H.-T.; Urban, P. L. Portable Pen-Probe Analyzer Based on Ion Mobility Spectrometry for In Situ Analysis of Volatile Organic Compounds Emanating from Surfaces and Wireless Transmission of the Acquired Spectra. Anal. Chem. 2021, 93, 2424– 2432.
181. Mochalski, P.; King, J.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Emission Rates of Selected Volatile Organic Compounds from Skin of Healthy Volunteers. J. Chromatogr. B 2014, 959, 62–70.
182. Wang, N.; Ernle, L.; Bekö, G.; Wargocki, P.; Williams, J. Emission Rates of Volatile Organic Compounds from Humans. Environ. Sci. Technol. 2022, 56, 4838–4848.
183. Haertl, T.; Owsienko, D.; Schwinn, L.; Hirsch, C.; Eskofier, B. M.; Lang, R.; Wirtz, S.; Loos, H. M. Exploring the Interrelationship between the Skin Microbiome and Skin Volatiles: A Pilot Study. Front. Ecol. Evol. 2023, 11, 1107463.
184. Garrido, J. A.; Parthasarathy, S.; Moschet, C.; Young, T. M.; McKone, T. E.; Bennett, D. H. Exposure Assessment for Air-To-Skin Uptake of Semivolatile Organic Compounds (SVOCs) Indoors. Environ. Sci. Technol. 2019, 53, 1608–1616.
185. Trivedi, D. K.; Sinclair, E.; Xu, Y.; Sarkar, D.; Walton-Doyle, C.; Liscio, C.; Banks, P.; Milne, J.; Silverdale, M.; Kunath, T.; Goodacre, R.; Barran, P. Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum. ACS Cent. Sci. 2019, 5, 599–606.
186. Zou, Z.; Yang, X. Skin Volatile Organic Compound Emissions from 14 Healthy Young Adults under Controlled Conditions. Build Environ. 2022, 222, 109416.
187. Duffy, E.; Albero, G.; Morrin, A. Headspace Solid-phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin. Cosmetics 2018, 5, 62–74.
188. Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; Costello, D. L. C. A Literature Survey of All Volatiles from Healthy Human Breath and Bodily Fluids: The Human Volatilome. J. Breath Res. 2021, 15, 034001.
189. Peterson, R. A.; Gueniche, A.; de-Beaumais, S., A.; Breton, L.; Dalko-Csiba, M., Packer, N. H. Sweating the Small Stuff: Glycoproteins in Human Sweat and their Unexplored Potential for Microbial Adhesion. Glycobiology 2016, 26, 218–229.
190. Kippenberger, S.; Havlíček, J.; Bernd, A.; Thaçi, D.; Kaufmann, R.; Meissner, M. 'Nosing Around' the Human Skin: What Information is Concealed in Skin Odour? Exp. Dermatol. 2012, 21, 655–659.
191. Baker, L. B.; Wolfe, A. S. Physiological Mechanisms Determining Eccrine Sweat Composition. Eur. J. Appl. Physiol. 2020, 120, 719–752.
192. Nicolaides N. Skin Lipids: their Biochemical Uniqueness. Science 1974, 186, 19–26.
193. Dutkiewicz, E. P.; Chiu, H.-Y.; Urban, P. L. Probing Skin for Metabolites and Topical Drugs with Hydrogel Micropatches. Anal. Chem. 2017, 89, 2664–2670.
194. Elpa, D. P.; Chiu, H.-Y.; Wu, S.-P.; Urban, P. L. Skin Metabolomics. Trends Endocrinol. Metab. 2021, 32, 66–75.
195. Curran, A. M.; Rabin, S. I.; Prada, P. A.; Furton, K. G. Comparison of the Volatile Organic Compounds Present in Human Odor using SPME-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619.
196. Kim, S.; Bae, S. In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS. Molecules 2022, 27, 4795–4808.
197. Birkemeyer, C. S.; Thomsen, R.; Jänig, S.; Kücklich, M.; Slama, A.; Weiß, B. M. Widdig A. Sampling the Body Odor of Primates: Cotton Swabs Sample Semivolatiles Rather than Volatiles. Chem. Senses 2016, 41, 525–535.
198. Bernier, U. R.; Kline, D. L.; Barnard, D. R.; Schreck, C. E.; Yost, R. A. Analysis of Human Skin Emanations by Gas Chromatography/Mass Spectrometry. 2. Identification of Volatile Compounds that are Candidate Attractants for the Yellow Fever Mosquito (Aedes aegypti). Anal. Chem. 2000, 72, 747–756.
199. Steeghs, M. M. L.; Moeskops, B. W. M.; Swam, K. V.; Cristescu, S. M.; Scheepers, P. T. J.; Harren, F. J. M. On-line Monitoring of UV-induced Lipid Peroxidation Products from Human Skin in vivo Using Proton-Transfer Reaction Mass Spectrometry. Int. J. Mass Spectrom. 2006, 253, 58–64.
200. Giannoukos, S.; Brkić, B.; Taylor, S.; France, N. Monitoring of Human Chemical Signatures Using Membrane Inlet Mass Spectrometry. Anal. Chem. 2014, 86, 1106–1114.
201. Gatmaitan, A. N.; Lin, J. Q.; Zhang, J.; Eberlin, L. S. Rapid Analysis and Authentication of Meat using the MasSpec Pen Technology. J. Agric. Food Chem. 2021, 69, 3527–3536.
202. Liu, S.; Li, Y.; Xu, W.; Zhai, Y. Coupling Handheld Liquid Microjunction-surface Sampling Probe (hLMJ-SSP) to the Miniature Mass Spectrometer for Automated and In-situ Surface Analysis. Talanta 2022, 242, 123090.
203. Meisenbichler, C.; Kluibenschedl, F.; Müller, T. A 3-in-1 Hand-Held Ambient Mass Spectrometry Interface for Identification and 2D Localization of Chemicals on Surfaces. Anal. Chem. 2020, 92, 14314–14318.
204. Chao, Y.-T.; Prabhu, G. R. D.; Yu, K.-C.; Syu, J.-Y.; Urban, P. L. BioChemPen for a Rapid Analysis of Compounds Supported on Solid Surfaces. ACS Sens. 2021, 6, 3744–3752.
205. Ou, H.-T.; Buchowiecki, K.; Urban, P., L. Remote Monitoring of Volatiles by Ion Mobility Spectrometry with Wireless Data Transmission and Centralized Data Analysis. Dig. Discov. 2022, 1, 806–815.
206. Yu, K.-C.; Hsu C.-Y.; Prabhu, G. R. D.; Chiu, H.-Y.; Urban, P. L. Vending-Machine-Style Skin Excretion Sensing. ACS Sens. 2023, 8, 326–334.
207. Abu Bakar, N. H..; Yu, K.-C.; Urban, P. L. Robotized Noncontact Open-Space Mapping of Volatile Organic Compounds Emanating from Solid Specimens. Anal. Chem. 2021, 93, 6889–6894.
208. Draper, J.; Lloyd, A.J.; Goodacre, R.; Beckmann, M. Flow Infusion Electrospray Ionisation Mass Spectrometry for High Throughput, Non-targeted Metabolite Fingerprinting: A Review. Metabolomics 2013, 9, 4–29.
209. Clemons, K.; Nnaji, C.; Verbeck, G. F. Overcoming Selectivity and Sensitivity Issues of Direct Inject Electrospray Mass Spectrometry via DAPNe-NSI-MS. J. Am. Soc. Mass Spectrom. 2014, 25, 705–711.
210. Havlicek, J.; Lenochova, P. The Effect of Meat Consumption on Body Odor Attractiveness. Chem. Senses 2006, 31, 747–752.
211. Willems, M.; Todaka, M.; Banic, M.; Cook, M.; Sekine, Y. Intake of New Zealand Blackcurrant Powder Affects Skin-Borne Volatile Organic Compounds in Middle-Aged and Older Adults. J. Diet. Suppl. 2022, 19, 603–620.
212. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. SANTE/11813/2017; European Commission Directorate General for Health and Food Safety, 2017. https://www.globalpulses.com/files/knowledge_center/20190610014256_pesticides_mrl_guidelines.pdf (accessed 2023-05-18).
213. Determination of LODs (limits of detection) and LOQs (limit of quantification). https://arts-sciences.und.edu/academics/chemistry/kubatova-research-group/_files/docs/determination_of_lods_new.pdf (accessed 2023-10-04).
214. Martin, H. J.; Reynolds, J. C.; Riazanskaia, S.; Thomas, C. L. P. High Throughput Volatile Fatty Acid Skin Metabolite Profiling by Thermal Desorption Secondary Electrospray Ionisation Mass Spectrometry. Analyst 2014, 139, 4279–4286.
215. Tse, T. J.; Wiens, D. J.; Chicilo, F.; Purdy, S. K.; Reaney, M. J. Value-Added Products from Ethanol Fermentation—A Review. Fermentation 2021, 7, 267–282.
216. Voidarou, C.; Antoniadou, M.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2021, 10, 69–96.
217. Shi, Y.; Li, X.; Huang, A. A Metabolomics-based Approach Investigates Volatile Flavor Formation and Characteristic Compounds of the Dahe Black Pig Dry-cured Ham. Meat Sci. 2019, 158, 107904.
218. Bleicher, J.; Ebner, E. E.; Bak, K. H. Formation and Analysis of Volatile and Odor Compounds in Meat—A Review. Molecules 2022, 27, 6703–6734.
219. Pérez-Santaescolástica, C.; Carballo, J.; Fulladosa, E.; Garcia-Perez, J. V.; Benedito, J.; Lorenzo, J. M. Effect of Proteolysis Index Level on Instrumental Adhesiveness, Free Amino Acids Content and Volatile Compounds Profile of Dry-cured Ham. Food Res. Int. 2018, 107, 559–566.
220. Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F. J.; Zhang, W.; Lorenzo, J. M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429–460.
221. Wen, X.; Zhang, D.; Li, X.; Ding, T.; Liang, C.; Zheng, X.; Yang, W.; Hou, C. Dynamic Changes of Bacteria and Screening of Potential Spoilage Markers of Lamb in Aerobic and Vacuum Packaging. Food Microbiol. 2022, 104, 103996.
222. Chan, P.N.A, Chemical Properties and Applications of Food Additives: Preservatives, Dietary Ingredients, and Processing Aids. In Handbook of Food Chemistry. Cheung, P., Mehta, B. Eds.; Springer, 2015, pp 77-100.
223. Li, X.; Zhu, J.; Li, C.; Ye, H.; Wang, Z.; Wu, X.; Xu, B. Evolution of Volatile Compounds and Spoilage Bacteria in Smoked Bacon during Refrigeration Using an E-Nose GC-MS Combined with Partial Least Squares Regression. Molecules 2018, 23, 3286–3306.
224. Garner, C. E.; Smith, S.; Costello, L.; White, P.; Spencer, R., J.; Probert, C. S.; Ratcliffem, N. M. Volatile Organic Compounds from Feces and their Potential for Diagnosis of Gastrointestinal Disease. Faseb J. 2007, 21, 1675–1688.
225. Tsushima, S.; Wargocki, P.; Tanabe, S. Sensory Evaluation and Chemical Analysis of Exhaled and Dermally Emitted Bioeffluents. Indoor Air 2018, 28, 146–163.
226. Troccaz, M.; Gaïa, N.; Beccucci, S.; Schrenzel, J.; Cayeux, I.; Starkenmann, C.; Lazarevic, V. Mapping Axillary Microbiota Responsible for Body Odours using a Culture-independent Approach. Microbiome 2015, 3, 3–18.
227. Obaldia, M. E. D.; Morita, T.; Dedmon, L. C.; Boehmler, D. J.; Jiang, C. S.; Zeledon, E. V.; Cross, J. R.; Vosshall, L. B. Differential Mosquito Attraction to Humans is Associated with Skin-derived Carboxylic Acid Levels. Cell 2022, 185, 4099–4116.
228. Jugreet, B. S.; Suroowan, S.; Rengasamy, R. K.; Mahomoodally, M. F. Chemistry, Bioactivities, Mode of Action and Industrial Applications of Essential Oils. Trends Food Sci. Technol. 2020, 101, 89–105.
229. Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol Bioactivity: A Review Focusing on Practical Applications. Arab. J. Chem. 2020, 13, 9243–9269.
230. Baker, R. R.; Massey, E. D.; Smith, G. An Overview of the Effects of Tobacco Ingredients on Smoke Chemistry and Toxicity. Food Chem. Toxicol. 2004, 42, 53–83.
231. Charles, S. M.; Jia, C.; Batterman, S. A.; Godwin, C.VOC and Particulate Emissions from Commercial Cigarettes: Analysis of 2,5-DMF as an ETS Tracer. Environ. Sci. Technol. 2008, 42, 1324–1331.
232. Keskes, H.; Belhadj, S.; Jlail, L.; Feki, A. E.; Sayadi, S.; Allouche, N. LC–MS–MS and GC–MS Analyses of Biologically Active Extracts of Tunisian Fenugreek (Trigonella foenum-graecum L.) Seeds. J. Food Meas. Charact. 2018, 2, 209–220.
233. Wani, S. A.; Kumar, P. Fenugreek: A Review on Its Nutraceutical Properties and Utilization in Various Food Products. J. Saudi Soc. Agric. Sci. 2018, 17, 97–106.
234. Akbari, S.; Abdurahman, N. H.; Yunus, R. M.; Alara, O. R.; Abayomi, O. O. Extraction, Characterization and Antioxidant Activity of Fenugreek (Trigonella-Foenum Graecum) Seed Oil. Mater. Sci. Energy Technol. 2019, 2, 349–355.
235. Mebazaa, R.; Rega, B.; Camel, V. Analysis of Human Male Armpit Sweat after Fenugreek Ingestion: Characterisation of Odour Active Compounds by Gas Chromatography Coupled to Mass Spectrometry and Olfactometry. Food Chem. 2011, 128, 227–235.
236. Martínez-Lozano, P. Mass Spectrometric Study of Cutaneous Volatiles by Secondary Electrospray Ionization. Int. J. Mass Spectrom. 2009, 282, 128–132.
237. Martínez-Lozano, P.; de la Mora, J. F. On-line Detection of Human Skin Vapors. J. Am. Soc. Mass Spectrom. 2009, 20, 1060–1063.
238. Chen, H.; Yang, S.; Wortmann, A.; Zenobi, R. Neutral Desorption Sampling of Living Objects for Rapid Analysis by Extractive Electrospray Ionization Mass Spectrometry. Angew. Chem. Int. Ed. 2007, 46, 7591–7594.
239. Prabhu, G. R. D.; Yang, T.-H.; Hsu, C.-Y.; Shih, C.-P.; Chang, C.-M.; Liao, P.-H.; Ni, H.-T.; Urban, P. L. Facilitating Chemical and Biochemical Experiments with Electronic Microcontrollers and Single-Board Computers. Nat. Protoc. 2020, 15, 925–990.
240. Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with A Modern Electronics Toolkit. Chem. Rev. 2020, 120, 9482–9553.