研究生: |
徐肇陽 Syu, Jhao-Yang |
---|---|
論文名稱: |
純三價與混價鈦亞磷酸鹽之合成、結構與性質研究 Syntheses, Structures and Properties of Trivalent and Mixed-Valent Titanium Phosphites |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
黃暄益
Huang, Hsuan-Yi 林嘉和 Lin, Chia-Her 李光華 Lii, Kwang-Hwa |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 162 |
中文關鍵詞: | 鈦 、亞磷酸鹽 、鈦亞磷酸鹽 |
外文關鍵詞: | Titanium, phosphite, Titanium phosphite |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對稀有的純三價與三四混價鈦亞磷酸鹽化合物的水熱合成進行深入研究。研究結果包含三個新穎混價鈦亞磷酸鹽化合物,並對純三價鈦亞磷酸鹽可逆氧化還原現象進行深入的探討。所有化合物的晶體結構皆以單晶X光繞射儀收集數據後進行結構解析,再進行後續性質的鑑定。
由於本實驗室之前開發的純三價與混價鈦亞磷酸鹽化合物合成的再現性不佳,而文獻上鈦亞磷酸鹽的例子只有兩個,分別為純三價與純四價,更沒有混價鈦亞磷酸鹽的合成條件能提供參考,本研究中策略性調整實驗參數,成功克服合成的再現性不佳的問題並且優化先前的合成條件,得到純三價鈦亞磷酸鹽的純相,並且合成出三個新穎混價鈦亞磷酸鹽化合物,分別是Ti2IIITiIV(HPO3)4(H2PO3)2(H2O)2 (C1)、(NH4)TiIIITiIV(HPO3)4 (C2)、(H1+x/3GUAN)3Ti7+xIIITi1-xIV(H2O)6 (HPO3)14 (x ≅ 0.5) (C3)。C1結構為中性純無機骨架且具有特殊的TiIII(H2O)O5配位形式,C2結構可視為TiIV(HPO3)2的衍生結構,而C3則是以有機胺作為模板的混價鈦亞磷酸鹽首例。在本論文所開發的合成系統中,能藉由調整反應條件來得到不同純三價與混價鈦亞磷酸鹽化合物。此研究結果,有利於未來針對還原態鈦亞磷酸鹽物質進一步的開發與研究。
對於兩個純相三價鈦亞磷酸鹽的同分異構物α-TiIII(H2PO3)(HPO3)(H2O) (α-III)與β-TiIII(H2PO3)(HPO3)(H2O) (β-III),我們也深入探討兩者的氧化還原現象。α-III與β-III在空氣下或加熱後皆會氧化,變成混價 (α-III/IV、β-III/IV)或四價 (α-IV、β-IV),經由實驗測量發現有兩種可能的氧化機制,因為機制的差異而導致兩者氧化速率不同,同時也發現氧化過程中釋出的產物會因環境中氧氣的存在與否而有差異。將氧化後的α-IV與β-IV置於乙二醇中經由全波段氙燈(300-800 nm)照射後能進行光還原成α-III與β-III,此為鈦磷酸/亞磷酸鹽文獻中罕見的可逆氧化還原現象,期望未來可利用此特性開發純三價鈦亞磷酸鹽光催化的應用性。
In this thesis, the hydrothermal synthetic conditions of rare trivalent (III) and mixed-valent (III&IV) titanium phosphites (TiHPs) were studied systematically. Three novel mixed-valent TiHPs were prepared via hydrothermal synthesis, and the reversible redox phenomenon of trivalent TiHPs was elucidated. All compounds were structurally characterized by single crystal X-ray diffraction and their properties were also characterized.
Low yield and poor reproducibility in synthesizing trivalent and mixed-valent TiHPs have been the issues in our previous studies. Since only two TiHPs, one is trivalent and one is tetravalent, were reported in the literature, there is no synthetic condition for reference especially for mixed-valent TiHPs. In this thesis, a systematic synthetic condition was elaborated by strategically adjusting experimental parameters. It successfully improved reproducibility and yield of the trivalent TiHPs, which were no single phase in our previous studies. The synthetic conditions were also modified to synthesize three novel mixed-valent TiHPs. Their formulas are Ti2IIITiIV(HPO3)4(H2PO3)2(H2O)2 (C1), (NH4)TiIIITiIV(HPO3)4 (C2) and (H1+x/3GUAN)3Ti7+xIIITi1-xIV(H2O)6 (HPO3)14 (x ≅ 0.5) (C3). C1 is a neutral inorganic structure, which comprises unique TiIII(H2O)O5 octahedra. C2 can be regarded as a derivative structure of TiIV(HPO3)2. C3 is the first example of organically templated mixed-valent TiHPs. The synthetic system developed in this thesis leads to different reduced TiHPs by adjusting the reaction conditions, which is praiseworthy for the synthesis of reduced TiHPs in the future.
α-TiIII(H2PO3)(HPO3)(H2O) (α-III) and β-TiIII(H2PO3)(HPO3)(H2O) (β-III) are trivalent TiHPs polymorphs, both of which showed redox phenomenon. We observed that both α-III and β-III were oxidized to mixed-valent titanium phosphites (α-III/IV, β-III/IV) or tetravalent titanium phosphites (α-IV, β-IV). Two possible oxidation mechanisms were elucidated based on experimental measurements. Because of the difference in oxidation mechanism, the oxidation rates of two polymorphs were different. During the oxidation process, different products were generated either in the presence or absence of oxygen in the environment. α-IV and β-IV could be reduced to α-III and β-III after being irradiated by xenon lamp (300-800 nm) in ethylene glycol. The redox phenomenon of α-III and β-III brings a new insight of titanium compounds, which might open a new door to photo-catalysis application.
第一章
1. (a) Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G., Nature 1999, 398, 227; (b) Thomas, J. M., Angew. Chem. Int. Ed. 1999, 38, 3588-3628; (c) Miller, R. D., Science 1999, 286, 421-423; (d) Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M., Proceedings of the National Academy of Sciences 2009, 106, 20637-20640; (e) Cheng, Y.; Samia, A. C.; Meyers, J. D.; Panagopoulos, I.; Fei, B.; Burda, C., J. Am. Chem. Soc. 2008, 130, 10643-10647; (f) Millward, A. R.; Yaghi, O. M., J. Am. Chem. Soc. 2005, 127, 17998-17999; (g) Qi, G.; Xu, J.; Su, J.; Chen, J.; Wang, X.; Deng, F., J. Am. Chem. Soc. 2013, 135, 6762-6765; (h) Sadakiyo, M.; Yamada, T.; Kitagawa, H., J. Am. Chem. Soc. 2011, 133, 11050-11053; (i) Takashima, Y.; Martínez, V. M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S., Nature Communications 2011, 2, 168; (j) Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S., J. Am. Chem. Soc. 2012, 134, 12780-12785.
2. Cronstedt, A. F., Rön och beskrifning om en obekant bärg art, som kallas Zeolites. 1756.
3. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M., J. Am. Chem. Soc. 1982, 104, 1146-1147.
4. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C., Nature 1988, 331, 698.
5. (a) Estermann, M.; McCusker, L.; Baerlocher, C.; Merrouche, A.; Kessler, H., Nature 1991, 352, 320; (b) Moore, P. B.; Shen, J., Nature 1983, 306, 356; (c) 賴宇倫, 清華大學化學系學位論文 2008, 1-361.
6. (a) Chang, Y.-C.; Wang, S.-L., J. Am. Chem. Soc. 2012, 134, 9848-9851; (b) Huang, H. L.; Wang, S. L., Angew. Chem. Int. Ed. 2015, 54, 965-968; (c) Huang, S. H.; Lin, C. H.; Wu, W. C.; Wang, S. L., Angew. Chem. Int. Ed. 2009, 48, 6124-6127; (d) Huang, S. H.; Wang, S. L., Angew. Chem. Int. Ed. 2011, 50, 5319-5322; (e) Jhang, P. C.; Chuang, N. T.; Wang, S. L., Angew. Chem. 2010, 122, 4296-4300; (f) Jhang, P. C.; Yang, Y. C.; Lai, Y. C.; Liu, W. R.; Wang, S. L., Angew. Chem. Int. Ed. 2009, 48, 742-745; (g) Lai, Y.-L.; Lii, K.-H.; Wang, S.-L., J. Am. Chem. Soc. 2007, 129, 5350-5351; (h) Liao, Y.-C.; Jiang, Y.-C.; Wang, S.-L., J. Am. Chem. Soc. 2005, 127, 12794-12795; (i) Liao, Y.-C.; Liao, F.-L.; Chang, W.-K.; Wang, S.-L., J. Am. Chem. Soc. 2004, 126, 1320-1321; (j) Liao, Y.-C.; Lin, C.-H.; Wang, S.-L., J. Am. Chem. Soc. 2005, 127, 9986-9987; (k) Lin, C.-H.; Wang, S.-L.; Lii, K.-H., J. Am. Chem. Soc. 2001, 123, 4649-4650; (l) Lin, H.-Y.; Chin, C.-Y.; Huang, H.-L.; Huang, W.-Y.; Sie, M.-J.; Huang, L.-H.; Lee, Y.-H.; Lin, C.-H.; Lii, K.-H.; Bu, X., Science 2013, 1232097; (m) Sie, M.-J.; Lin, C.-H.; Wang, S.-L., J. Am. Chem. Soc. 2016, 138, 6719-6722; (n) Yang, Y.-C.; Wang, S.-L., J. Am. Chem. Soc. 2008, 130, 1146-1147.
7. 謝宗修.國立清華大學碩士論文, 2017.
8. 王素蘭, 科儀新知 2005, 48-54.
9. Apex II software package; Bruker AXS, Madison, WI, 2008.
10. Sheldrick, G., Bruker-Axs: Madison, WI 1998.
11. Brown, I. D.; Altermatt, D., Acta Crystallographica Section B 1985, 41, 244-247.
第二章
1. (a) Breck, D. W.; Sieves, Z. M., Zeolite Molecular Sieves. Wiley, New York 1974; (b) Corma, A., Chem. Rev. 1997, 97, 2373-2420.
2. (a) Cheetham, A. K.; Férey, G.; Loiseau, T., Angew. Chem. Int. Ed. 1999, 38, 3268-3292; (b) Lin, C.-H.; Wang, S.-L.; Lii, K.-H., J. Am. Chem. Soc. 2001, 123, 4649-4650.
3. Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D., Science 1999, 283, 1148-1150.
4. (a) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Nature 1999, 402, 276; (b) Rowsell, J. L.; Spencer, E. C.; Eckert, J.; Howard, J. A.; Yaghi, O. M., Science 2005, 309, 1350-1354; (c) Devic, T.; David, O.; Valls, M.; Marrot, J.; Couty, F.; Férey, G., J. Am. Chem. Soc. 2007, 129, 12614-12615.
5. (a) Davis, M. E., Nature 2002, 417, 813; (b) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'keeffe, M.; Yaghi, O. M., Science 2002, 295, 469-472; (c) Forster, P. M.; Eckert, J.; Chang, J.-S.; Park, S.-E.; Férey, G.; Cheetham, A. K., J. Am. Chem. Soc. 2003, 125, 1309-1312; (d) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Chem. Soc. Rev. 2009, 38, 1450-1459; (e) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C., Nature materials 2010, 9, 172; (f) Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C., Coord. Chem. Rev. 2011, 255, 1791-1823.
6. (a) König, E.; Hellwege, K.-H.; Hellwege, A., 1966; (b) Wilson, J. A.; Yoffe, A., Advances in Physics 1969, 18, 193-335; (c) Carlin, R. L.; van Duyneveldt, A. J., Magnetic properties of transition metal compounds. Springer: 1977; (d) Kline, G.; Kam, K. K.; Ziegler, R.; Parkinson, B. A., Solar Energy Materials 1982, 6, 337-350; (e) Sutin, N.; Creutz, C.; Fujita, E., Comments Inorg. Chem. 1997, 19, 67-92; (f) Kalyanasundaram, K.; Grätzel, M., Coord. Chem. Rev. 1998, 177, 347-414; (g) Wu, C.-G.; Chao, C.-C.; Kuo, F.-T., Catal. Today 2004, 97, 103-112; (h) Kröger, M.; Hamwi, S.; Meyer, J.; Riedl, T.; Kowalsky, W.; Kahn, A., Org. Electron. 2009, 10, 932-938.
7. (a) Ekambaram, S.; Sevov, S. C., Angew. Chem. Int. Ed. 1999, 38, 372-375; (b) Serre, C.; Guillou, N.; Ferey, G., J. Mater. Chem. 1999, 9, 1185-1189; (c) Ekambaram, S.; Serre, C.; Férey, G.; Sevov, S. C., Chem. Mater. 2000, 12, 444-449; (d) Chippindale, A. M.; Grimshaw, M. R.; Powell, A. V.; Cowley, A. R., Inorg. Chem. 2005, 44, 4121-4123; (e) Zhao, Y.; Yang, Y.; Yang, X.; Guo, W., Chem. Lett. 2007, 36, 456-457; (f) Zhao, Y.; Yu, J.; Kwon, Y.-U., Bull. Korean Chem. Soc. 2008, 29, 805-810; (g) Serre, C.; Haouas, M.; Taulelle, F.; Van Beek, W.; Férey, G., Comptes Rendus Chimie 2010, 13, 336-342.
8. (a) Kinomura, N.; Muto, F.; Koizumi, M., J. Solid State Chem. 1982, 45, 252-258; (b) Leclaire, A.; Benmoussa, A.; Borel, M.; Grandin, A.; Raveau, B., J. Solid State Chem. 1988, 77, 299-305; (c) Benmoussa, A.; Borel, M.; Grandin, A.; Leclaire, A.; Raveau, B., J. Solid State Chem. 1990, 84, 299-307; (d) Harrison, W. T.; Gier, T.; Stucky, G., Acta Crystallographica Section C 1994, 50, 1643-1646; (e) Lin, C.-H.; Wang, S.-L., Inorg. Chem. 2005, 44, 251-257.
9. (a) 李激揚; 吳俊標; 劉航, 2013, CN103395800 A; (b) Lallaoui, A.; Edfouf, Z.; Benabdallah, O.; Idrissi, S.; Abd-Lefdil, M.; Cherkaoui El Moursli, F., Int. J. Hydrogen Energy 2018.
10. 謝宗修. 國立清華大學碩士論文. 2017.
11. 牧智勤. 國立清華大學碩士論文. 2015.
12. Serre, C.; Taulelle, F.; Ferey, G., Chem. Commun. 2003, 2755-2765.
13. (a) Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M., The Journal of Physical Chemistry C 2012, 116, 20848-20853; (b) Kirby, K. W.; Wechsler, B. A., J. Am. Ceram. Soc. 1991, 74, 1841-1847; (c) Solntsev, V. P.; Yurkin, A. M., Crystallography Reports 2000, 45, 128-132; (d) Wang, F.; Zheng, W.-C., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007, 67, 1281-1283.
14. Abraham, M. M.; Bamberger, C. E., J. Am. Ceram. Soc. 1991, 74, 2299-2300.
第三章
1. 謝宗修. 國立清華大學碩士論文, 2017.
2. Lin, C.-H.; Wang, S.-L., Inorg. Chem. 2005, 44, 251-257.
3. Chippindale, A. M.; Grimshaw, M. R.; Powell, A. V.; Cowley, A. R., Inorg. Chem. 2005, 44, 4121-4123.
4. Li, J.; Banerjee, A.; Preston, D. R.; Shay, B. J.; Adhikary, A.; Sevilla, M. D.; Loloee, R.; Staples, R. J.; Chavez, F. A., Eur. J. Inorg. Chem. 2017, 2017, 5529-5535.
5. (a) Lai, W.; Li, C.; Chen, H.; Shaik, S., Angew. Chem. Int. Ed. 2012, 51, 5556-5578; (b) Porter, T. R.; Mayer, J. M., Chemical science 2014, 5, 372-380;
(c) http://research.chem.psu.edu/shsgroup/pdf_Art/shs-pcet-09.pdf
6. (a) McFarlane, F.; Tindall, G., Inorganic and Nuclear Chemistry Letters 1973, 9, 907-915; (b) Kryukov, A.; Kuchmii, S. Y.; Korzhak, A., Theor. Exp. Chem. 1986, 22, 44-51; (c) Kuchmii, S. Y.; Korzhak, A.; Kryukov, A., Theor. Exp. Chem. 1987, 22, 650-656; (d) Schrauben, J. N.; Hayoun, R.; Valdez, C. N.; Braten, M.; Fridley, L.; Mayer, J. M., Science 2012, 336, 1298-1301; (e) Bart, B.; Frederik, V.; P., V. D. E.; Helge, R.; Chih-Chin, T.; Pieterjan, V.; Trees, D. B.; Rob, A.; A., K. C. E.; Veronique, V. S.; M., M. J.; Dirk, D. V., Angew. Chem. 2015, 127, 14118-14123.
7. (a) Huynh, M. H. V.; Meyer, T. J., Chem. Rev. 2007, 107, 5004-5064; (b) Hammes-Schiffer, S.; Soudackov, A. V., The Journal of Physical Chemistry B 2008, 112, 14108-14123.
8. (a) Kirby, K. W.; Wechsler, B. A., J. Am. Ceram. Soc. 1991, 74, 1841-1847; (b) Solntsev, V. P.; Yurkin, A. M., Crystallography Reports 2000, 45, 128-132; (c) Wang, F.; Zheng, W.-C., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007, 67, 1281-1283; (d) Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M., The Journal of Physical Chemistry C 2012, 116, 20848-20853; (e) Nasalevich, M. A.; Becker, R.; Ramos-Fernandez, E. V.; Castellanos, S.; Veber, S. L.; Fedin, M. V.; Kapteijn, F.; Reek, J. N.; Van Der Vlugt, J.; Gascon, J., Energy & Environmental Science 2015, 8, 364-375.
9. Kryukov, A. I.; Korzhak, A.; Kuchmii, S. Y., Theor. Exp. Chem. 1984, 20, 161-168.
10. Oster, G. K.; Oster, G., J. Am. Chem. Soc. 1959, 81, 5543-5545.