研究生: |
蔡定暉 Tsai, Ding-Huei |
---|---|
論文名稱: |
以固體鹼觸媒基材作為銅觸媒二氧化碳還原電催化選擇性與反應界面影響 The influence of alkaline catalyst supports on the carbon dioxide reduction reaction catalyzed by copper |
指導教授: |
潘詠庭
Pan, Yung-Tin |
口試委員: |
蔡德豪
Tsai, De-Hao 周子勤 Chou, Tsu-Chin 游文岳 Yu, Wen-Yueh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 電催化二氧化碳還原反應 、薄膜電極電池組裝 、氧化鎂觸媒基材 、原位擴散反射傅立葉轉換紅外線光譜 |
外文關鍵詞: | electrolysis CO2RR, Membrane electrode assembly, MgO catalyst support, DRIFTS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳還原反應(Carbon dioxide reduction reaction CO2RR),為將二氧化碳轉變為具有高經濟價值的產物之反應。由於全球二氧化碳在大氣中的濃度不斷攀升,是今日極端氣候的主要肇因,減少二氧化碳在大氣中的含量便成為現今高度重視的研究之一。2021年第76屆聯合國大會,全球128個國家已宣示2050年要達到淨零排碳目標,短期目標則是2030年需減少43%排碳。近期內企業透過製程優化、綠電使用、與資源循環等方法減少排碳,面對二氧化碳排放則有碳封存與碳捕捉等成熟的技術可以應用。但若要將二氧化碳真正減量,CO2RR是未來的關鍵技術,不僅是循環經濟的表現,同時也是化學能再利用的表現。然而直到今日,CO2RR材料的選擇與系統種類、參數研究方面仍有許多亟需改善之空間。
在本研究中,我們以離子交換薄膜燃料電池組作為電化學模組,並以連續式進料反應器測試CO¬2RR電化學行為。電池的兩極則為氣體擴散電極,陰陽兩極皆以噴塗的方式均勻塗佈觸媒材料在擴散電極基材上,並以陰離子交換薄膜作為區隔電池組中陰陽兩極之固態電解質。本研究專注於陰極觸媒之載體(support)與其界面對於CO2RR電化學反應之影響。本研究以銅金屬 (Copper, Cu)作為陰極觸媒,深入探討鹼土金屬氧化物固體鹼,也就是氧化鎂 (Magnesium oxide, MgO),如何影響銅觸媒與CO2 的交互作用。利用濕式含浸法,我們成功的製備了晶相和大小均勻的氧化鎂負載金屬銅觸媒 (Cu@MgO)。此觸媒較碳黑附載或單純金屬銅有明顯 CO2RR 之活性提升並且同時抑制競爭的產氫反應。除了電化學轉化反應的測試,我們還利用擴散反射式紅外線轉換光譜儀 (DRIFT) 搭配質譜儀作程序升溫之CO2 吸附光譜 (IR) 和脫附分析 (TPD) 來探究活性提升之根本原因並且提供可能的解釋。我們的結果顯示,Cu@MgO有不同於純MgO和純Cu的CO2 吸附構型,並且有更多的CO2吸附於Cu上,促進CO2RR。
The carbon dioxide reduction reaction (CO2RR) has become a key area of research nowadays because of its potential for utilizing renewable energy sources to transform waste CO2 into value added products and create incentives for CO2 capture. At the 76th United Nations General Assembly, 128 countries have announced to achieve carbon neutrality by 2050 and 43% reduction in 2030. Although carbon sequestration and carbon capture can be applied, CO2RR is one of the key technologies to make it economically justified. However, for CO2RR, there is still plenty room for improvement as the energy efficiency to electrochemically reduce CO2 is not yet satisfactory.
In this study, we utilized the membrane electrode assemblies (MEA) to carry out CO2RR continuously with the anode fed with pure water and cathode with humidified CO2. The MEA consists of an anion exchange polymer membrane sandwiched between the cathode gas diffusion electrode and the anode porous transport electrode. Our research focuses on the catalyst support materials and how they influence the electrochemical performance of the cathode catalyst. Specifically, we are studying the impact of solid base materials, magnesium oxide (MgO) in our case, on the copper (Cu) catalyst. Our results show that the MgO supported Cu catalyst (Cu@MgO) had compelling CO2RR reactivity and selectivity against hydrogen evolution when compared with carbon supported or self-supported Cu. Temperature resolved CO2 adsorption infrared spectroscopy and desorption profiles reveals the enhanced binding of CO2, both in strength and quantity, on Cu@MgO that is different from pure MgO and Cu. The enhanced CO2 binding on Cu is therefore considered as the origin of the much higher CO2RR activity demonstrated by Cu@MgO.
1. Fan, L., et al., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Science Advances. 6(8): p. eaay3111.
2. Jayathilake, B.S., et al., Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor. Acc Chem Res, 2019. 52(3): p. 676-685.
3. Darensbourg, D.J., A. Rokicki, and M.Y. Darensbourg, Facile reduction of carbon dioxide by anionic Group 6b metal hydrides. Chemistry relevant to catalysis of the water-gas shift reaction. Journal of the American Chemical Society, 1981. 103(11): p. 3223-3224.
4. NOAA. carbon dioxide DIRECT MEASUREMENTS: 2005-PRESENT. NASA GLOBAL CLIMATE CHANGE Vital Signs of the planet. 2021, September 7 [cited 2021 September 27]; Available from: https://climate.nasa.gov/vital-signs/carbon-dioxide/.
5. NASA/GISS. Global temperature GLOBAL LAND-OCEAN TEMPERATURE INDEX. NASA GLOBAL CLIMATE CHANGE Vital Signs of the planet. . 2020 [cited 2021 September 27]; Available from: https://climate.nasa.gov/vital-signs/global-temperature/.
6. de Jesus Gálvez-Vázquez, M., et al., Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer. ACS Catalysis, 2020. 10(21): p. 13096-13108.
7. Weng, L.-C., A.T. Bell, and A.Z. Weber, Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy & Environmental Science, 2019. 12(6): p. 1950-1968.
8. Leonard, M.E., et al., Investigating Electrode Flooding in a Flowing Electrolyte, Gas-Fed Carbon Dioxide Electrolyzer. ChemSusChem, 2020. 13(2): p. 400-411.
9. Burdyny, T. and W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 2019. 12(5): p. 1442-1453.
10. Weekes, D.M., et al., Electrolytic CO2 Reduction in a Flow Cell. Acc Chem Res, 2018. 51(4): p. 910-918.
11. Passalacqua, E., et al., Nafion Content in the Catalyst Layer of Polymer Electrolyte Fuel Cells: Effects on Structure and Performance. Electrochimica Acta, 2001. 46: p. 799-805.
12. Fadzillah, D.M., et al., Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells. Renewable and Sustainable Energy Reviews, 2017. 77: p. 1001-1009.
13. Sung, C.-C., C.-Y. Liu, and C.C.J. Cheng, Performance improvement by a glue-functioned Nafion layer coating on gas diffusion electrodes in PEM fuel cells. International Journal of Hydrogen Energy, 2014. 39(22): p. 11700-11705.
14. Shangguan, Z., et al., Understanding the functions and modifications of interfaces in membrane electrode assemblies of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021. 9(27): p. 15111-15139.
15. Varela, A.S., et al., Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catalysis Today, 2016. 260: p. 8-13.
16. Endrodi, B., et al., Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency. ACS Energy Lett, 2019. 4(7): p. 1770-1777.
17. Möller, T., et al., The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy & Environmental Science, 2021. 14(11): p. 5995-6006.
18. Kaczur, J.J., et al., Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Front Chem, 2018. 6: p. 263.
19. Evjen, S., et al., Viscosity, Density, and Volatility of Binary Mixtures of Imidazole, 2-Methylimidazole, 2,4,5-Trimethylimidazole, and 1,2,4,5-Tetramethylimidazole with Water. Journal of Chemical & Engineering Data, 2019. 64(2): p. 507-516.
20. Hou, P., et al., Gas Phase Electrolysis of Carbon Dioxide to Carbon Monoxide Using Nickel Nitride as the Carbon Enrichment Catalyst. ACS Appl Mater Interfaces, 2018. 10(44): p. 38024-38031.
21. Weng, L.C., A.T. Bell, and A.Z. Weber, Modeling gas-diffusion electrodes for CO2 reduction. Phys Chem Chem Phys, 2018. 20(25): p. 16973-16984.
22. Sadhasivam, T., et al., Graphitized carbon as an efficient mesoporous layer for unitized regenerative fuel cells. International Journal of Hydrogen Energy, 2016. 41(40): p. 18226-18230.
23. Jhong, H.-R., et al., Combining Structural and Electrochemical Analysis of Electrodes Using Micro-Computed Tomography and a Microfluidic Fuel Cell. Journal of The Electrochemical Society, 2012. 159(3): p. B292-B298.
24. Higgins, D., et al., Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm. ACS Energy Letters, 2018. 4(1): p. 317-324.
25. Wu, K., et al., Modeling and Experimental Validation of Electrochemical Reduction of CO2 to CO in a Microfluidic Cell. Journal of The Electrochemical Society, 2015. 162(1): p. F23-F32.
26. Rabiee, H., et al., Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy & Environmental Science, 2021. 14(4): p. 1959-2008.
27. García de Arquer, F.P., et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science, 2020. 367(6478): p. 661-666.
28. Li, Y.C., et al., Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells. ACS Energy Letters, 2016. 1(6): p. 1149-1153.
29. Gu, Y., et al., A study on improving the current density performances of CO2 electrolysers. Scientific Reports, 2021. 11(1).
30. Xue, Q., et al., DFT Study on the CO2 Reduction to C2 Chemicals Catalyzed by Fe and Co Clusters Supported on N-Doped Carbon. Nanomaterials, 2022. 12(13).
31. Ling, Y., et al., Optimization Strategies for Selective CO2 Electroreduction to Fuels. Transactions of Tianjin University, 2021. 27(3): p. 180-200.
32. Tan, Y.C., et al., Modulating Local CO2 Concentration as a General Strategy for Enhancing C−C Coupling in CO2 Electroreduction. Joule, 2020. 4(5): p. 1104-1120.
33. Rosen Brian, A., et al., Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science, 2011. 334(6056): p. 643-644.
34. Varela, A.S., et al., Electrochemical Reduction of CO2 on Metal-Nitrogen-Doped Carbon Catalysts. ACS Catalysis, 2019. 9(8): p. 7270-7284.
35. Zhu, W., et al., Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc, 2013. 135(45): p. 16833-6.
36. Li, Q., et al., Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure. J Am Chem Soc, 2017. 139(12): p. 4290-4293.
37. Choi, S.Y., et al., Electrochemical Reduction of Carbon Dioxide to Formate on Tin–Lead Alloys. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1311-1318.
38. Kim, J., et al., Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene Production by Electrochemical Carbon Dioxide Reduction. J Am Chem Soc, 2019. 141(17): p. 6986-6994.
39. Wang, X., et al., Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat Commun, 2019. 10(1): p. 5186.
40. Zahid, A., A. Shah, and I. Shah, Oxide Derived Copper for Electrochemical Reduction of CO2 to C2+ Products. Nanomaterials (Basel), 2022. 12(8).
41. Li, J., et al., Copper adparticle enabled selective electrosynthesis of n-propanol. Nature Communications, 2018. 9(1): p. 4614.
42. Reske, R., et al., Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc, 2014. 136(19): p. 6978-86.
43. Hirunsit, P., W. Soodsawang, and J. Limtrakul, CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight. The Journal of Physical Chemistry C, 2015. 119(15): p. 8238-8249.
44. De Gregorio, G.L., et al., Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities. ACS Catal, 2020. 10(9): p. 4854-4862.
45. Zeng, J., et al., Facile synthesis of cubic cuprous oxide for electrochemical reduction of carbon dioxide. Journal of Materials Science, 2021. 56: p. 1-17.
46. Li, J., et al., Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Communications, 2021. 12.
47. Bernal, M., et al., CO2 Electroreduction on Copper-Cobalt Nanoparticles: Size and Composition Effect. Nano Energy, 2018. 53.
48. Xu, H., et al., Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nature Energy, 2020. 5(8): p. 623-632.
49. Zhang, J., et al., Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO2 reduction in flow reactors. Cell Reports Physical Science, 2022.
50. Jaster, T., et al., Electrochemical CO2 reduction toward multicarbon alcohols - The microscopic world of catalysts & process conditions. iScience, 2022. 25(4): p. 104010.
51. Choi, C., et al., Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Research, 2021. 14(10): p. 3497-3501.
52. Dang, S., et al., Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity. Science Advances. 6(25): p. eaaz2060.
53. Rutkowska, I.A., et al., Electrocatalytic and Photoelectrochemical Reduction of Carbon Dioxide at Hierarchical Hybrid Films of Copper(I) Oxide Decorated with Tungsten(VI) Oxide Nanowires. Journal of The Electrochemical Society, 2019. 166(5): p. H3271-H3278.
54. Ju, W., et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun, 2017. 8(1): p. 944.
55. Jiang, A., M. Qi, and J. Xiao, Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review. Journal of Materials Science & Technology, 2018. 34(9): p. 1467-1473.
56. Lin, L., et al., Temperature-Dependent CO2 Electroreduction over Fe-N-C and Ni-N-C Single-Atom Catalysts. Angew Chem Int Ed Engl, 2021. 60(51): p. 26582-26586.
57. Zhang, S., et al., Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc, 2014. 136(22): p. 7845-8.
58. Yin, Z., et al., Cu3N Nanocubes for Selective Electrochemical Reduction of CO2 to Ethylene. Nano Lett, 2019. 19(12): p. 8658-8663.
59. Torbensen, K., et al., Molecular Catalysts Boost the Rate of Electrolytic CO2 Reduction. ACS Energy Letters, 2020. 5(5): p. 1512-1518.
60. Fernandes, D.M., A.F. Peixoto, and C. Freire, Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO2 conversion and valorisation. Dalton Trans, 2019. 48(36): p. 13508-13528.
61. Pan, F., et al., Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. 2019. 68.
62. Pei, Y., H. Zhong, and F. Jin, A brief review of electrocatalytic reduction of CO2—Materials, reaction conditions, and devices. Energy Science & Engineering, 2021. 9(7): p. 1012-1032.
63. Ma, S., et al., Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. Journal of Materials Chemistry A, 2016. 4(22): p. 8573-8578.
64. Gao, J., et al., Selective C-C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. J Am Chem Soc, 2019. 141(47): p. 18704-18714.
65. Zhan, C., et al., Revealing the CO Coverage-Driven C-C Coupling Mechanism for Electrochemical CO2 Reduction on Cu2O Nanocubes via Operando Raman Spectroscopy. ACS Catal, 2021. 11(13): p. 7694-7701.
66. Devasia, D., et al., A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nature Communications, 2021. 12(1): p. 2612.
67. Montoya, J., A. Peterson, and J. Nørskov, Insights into CC Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem, 2013. 5.
68. Kim, Y., et al., Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy & Environmental Science, 2020. 13: p. 4301-4311.
69. Wu, S.-Y. and H.-T. Chen, CO2 Electrochemical Reduction Catalyzed by Graphene Supported Palladium Cluster: A Computational Guideline. ACS Applied Energy Materials, 2019. 2(2): p. 1544-1552.
70. He, Y., et al., Pore-structure-directed CO2 electroreduction to formate on SnO2/C catalysts. Journal of Materials Chemistry A, 2019. 7(31): p. 18428-18433.
71. Bejtka, K., et al., Chainlike Mesoporous SnO2 as a Well-Performing Catalyst for Electrochemical CO2 Reduction. ACS Applied Energy Materials, 2019. 2(5): p. 3081-3091.
72. Gostick, J.T., et al., Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells. Journal of Power Sources, 2006. 156(2): p. 375-387.
73. Chang, H.-M., et al., Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell. Journal of Power Sources, 2011. 196(8): p. 3773-3780.
74. Pandhare, N.N., et al., Selective Hydrogenolysis of Glycerol to 1,2-Propanediol over Highly Active and Stable Cu/MgO Catalyst in the Vapor Phase. Organic Process Research & Development, 2016. 20(6): p. 1059-1067.
75. Nakashima, D., et al., Promoted partial oxidation activity of alkali metal added-Co catalysts supported on NaY and NaUSY zeolites in the gas-phase catalytic oxidation of benzyl alcohol. Journal of Molecular Catalysis A: Chemical, 2006. 259(1-2): p. 108-115.
76. Ito, T., et al., Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. Journal of the American Chemical Society, 1985. 107(18): p. 5062-5068.
77. Zeng, H.-y., et al., Synthesis of Propylene Glycol Monomethyl Ether Over Mg/Al Hydrotalcite Catalyst. Catalysis Letters, 2010. 137(1-2): p. 94-103.
78. Zhang, Z.-Q., et al., Mg–Al hydrotalcites as solid base catalysts for alcoholysis of propylene oxide. Fuel Processing Technology, 2014. 128: p. 519-524.
79. Di Cosimo, J.I., et al., Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. Journal of Catalysis, 1998. 178(2): p. 499-510.
80. Timofeeva, M.N., et al., Synthesis of propylene glycol methyl ether from methanol and propylene oxide over alumina-pillared clays. Applied Catalysis B: Environmental, 2011. 102(3-4): p. 433-440.
81. Sawayama, Y.-s., et al., Promoting Effect and Role of Alkaline Earth Metal Added to Supported Ag Catalysts in the Gas-Phase Catalytic Oxidation of Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2006. 45(26): p. 8837-8845.
82. Liu, N., et al., CO2 reduction on p-block metal oxide overlayers on metal substrates—2D MgO as a prototype. Journal of Materials Chemistry A, 2020. 8(11): p. 5688-5698.
83. Sueto, S., et al., Catalytic Activity of NAZSM-5 Supported Cu Catalysts with or without Added Alkali Metal in Benzyl Alcohol Oxidation. J. Chem. Soc., Faraday Trans., 1997. 93: p. 659.
84. Hofmeister, A.M., E. Keppel, and A.K. Speck, Absorption and reflection infrared spectra of MgO and other diatomic compounds. Monthly Notices of the Royal Astronomical Society, 2003. 345(1): p. 16-38.
85. Sagaya Selvam, C., et al., Comparative Study of Microwave and Conventional Methods for the Preparation and Optical Properties of Novel MgO-Micro and Nano-Structures. Journal of Alloys and Compounds, 2011. 509: p. 9809-9815.
86. Gong, Z.-J., et al., Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental, 2020. 265.
87. Di Cosimo, J.I., et al., Chapter 1. Basic catalysis on MgO: generation, characterization and catalytic properties of active sites, in Catalysis. 2014. p. 1-28.
88. Grosse, P., et al., Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat Commun, 2021. 12(1): p. 6736.
89. Song, H., et al., Tunable Product Selectivity in Electrochemical CO2 Reduction on Well-Mixed Ni-Cu Alloys. ACS Appl Mater Interfaces, 2021. 13(46): p. 55272-55280.
90. Shi, R., et al., Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nature Communications, 2020. 11.
91. Pribyl-Kranewitter, B., et al., Investigation and Optimization of Operating Conditions for Low-Temperature CO2 Reduction to CO in a Forward-Bias Bipolar-Membrane Electrolyzer. Journal of The Electrochemical Society, 2021. 168.