簡易檢索 / 詳目顯示

研究生: 廖雅佩
Ya-Pei Liao
論文名稱: 在G-凸空間裡的同質點定理、廣義變分不等式定理及大中取小不等式定理
指導教授: 陳啟銘 博士
Chi-Ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 20
中文關鍵詞: 殆 G-凸集合G-KKM(X,Y)集族映射同質點定理變分不等式定理大中取小不等式定理
外文關鍵詞: almost G -convex set, G-KKM(X,Y), –mapping, coincidence theorem, variational inequality theorem, minimax inequality theorem
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文中,我們在G-凸空間建立G-KKM(X,Y) 集族與 映射之間的同質點定理、廣義變分不等式定理與大中取小不等式定理。(特殊符號無法顯現,請參閱PDF檔)


    In this paper,we establish some coincidence theorems, generalized variational inequality theorems and minimax inequality theorems for the family G-KKM(X,Y) and the –mapping on G-convex spaces.。(特殊符號無法顯現,請參閱PDF檔)

    1. Introduction and Preliminaries ------------------ 1 2. Coincidence theorems for the-mapping and the family -7 3. Generalized variational theorems and minimax inequality theorems -12 4. References ---------------------------------------- 19

    [1] O. H. Ansari, A. Idzik, J. C. Yao, Coincidence and fixed point theoremswith applications, Topol. Methods Nonlinear Anal.15(2000), 191-202.
    [2] S. S. Chang, B. S. Lee, X. Wu, Y. J. Cho, G. M. Lee, On the generalized
    quasi-variational inequality problems, J. Math. Ann. Appl. 203(1996), 686-
    711.
    [3] T. H. Chang, C. L. Yen, KKM property and fixed point theorems, J. Math. Ann. Appl. 203(1996), 224-235.
    [4] T. H. Chang, Y. Y. Huang, J. C. Jeng and K. H. Kuo, On S-KKM Property and Related Topics, J. Math. Anal. Appl. 229(1999), 212-227.
    [5] T. H. Chang, Y. L. Lee, G-S-KKM theorem and its applications, J. Graduate Institute of Mathematics and Science, NHCTC, HsinChu, Taiwan, R.O.C In Press.
    [6] X. P. Ding, Coincidence theorems in topologicalspaces and their applications, Applied. Math. Lett. 12(1999), 99-105.
    [7] X. P. Ding, Existence of solutions for quasi-equilibrium problems in noncompact topological spaces, Comput. Math. Appl. 39(2000), 13-21.
    [8] X. P. Ding, Generalized G-KKM theorems in generalized convex spaces and their applications, . Math. Anal. Appl. 266(2002), 21-37.
    [9] Ky Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961), 305-310.
    [10] B. Knaster, C. Kurnatoaski, S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929), 132-137.
    [11] L. J. Lin, H. I. Chen, Coincidence theorems for family of multimaps and its applications to equilibrium promblems, J. Abstr. Anal. 5(2003), 295-305.
    [12] L. J. Lin, System of coincidence theorems with applications, J. Math. Anal. Appl. 285(2003), 408-418.
    [13] L. J. Lin, Q. H. Ansai, J. Y. Wu, Geometric properties and coincidence
    theorems with applications to generalized vector equilibrium problems, J.
    Optim. Theory Appl. 117(1)(2003), 121-137.
    [14] L. J. Lin, Z. T. Yu, Q. H. Ansai, L. P. Lai, Fixed point and maximal theorems with applications to abstract economies and minimax inequalities, J. Math. Anal. Appl. 284(2003), 656-671.
    [15] G. J. Minty, On the maximal domain of a monotone function, Michigan Math. J.8(1961), 179-182.
    [16] S. Park, H. Kim, Coincidence theorems for admissible multifunctions on
    generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.
    [17] G. Tina, J. Zhou, Transfer continuities, generalizations of the Weiestrass and maximum theorems; a full characterization. J. Math. Econom. 24(1995), 281-303.
    [18] X. Z. Yuan, KKM theorem and application in nonlinear analysis, Marcel Dekker, New York,(1999)189-192.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE