研究生: |
夏季莆 Hsia, Chi-Fu |
---|---|
論文名稱: |
合成核不在中心之金-銅核殼結構奈米晶體行點擊反應及製備金-銅-氧化亞銅奈米晶體以鑑定其光學性質之晶面效應 Synthesis of Au–Cu Core–Shell Nanocrystals with Noncentrally Located Cores for Click Reactions and the Fabrication of Au@Cu–Cu2O Nanocrystals for Facet-Dependent Optical Property Characterization |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
王素蘭
Wang, Sue-Lein 段興宇 Tuan, Hsing-Yu 呂明諺 Lu, Ming-Yen 劉學儒 Liu, Hsueh-Ju 吳欣倫 Wu, Hsin-Lun |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 銅 、氧化亞銅 、點擊反應 |
外文關鍵詞: | Copper, Cu2O, Click reaction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究合成的材料為金-銅核殼結構之奈米立方體及八面體,藉由調控此奈米晶體的大小來探討其對光學性質的影響,並應用此材料作為催化劑進行點擊反應,合成多樣的三唑化合物,最後將此材料當作核殼結構的核來合成不同形狀和粒徑之金-銅-氧化亞銅核殼結構奈米晶體,探討三種不同形狀的核殼結構對光學性質的影響。
此研究使用之化學合成方法為在水相環境中製備金-銅核殼的奈米結構,利用35奈米的金八面體當作模板進行金-銅核殼異質結構的合成。在100 ºC下,反應時間45分鐘到一個半小時間,將十六胺加入到水溶液,接著加入氯化亞銅或醋酸銅、金八面體和維生素C並調控劑量,可以合成出不同粒徑之金-銅核殼結構奈米立方體和八面體。實驗結果發現,十六胺除了會增加溶液的酸鹼值也會和銅離子進行配位形成銅胺錯合物。由於金銅之間的晶格常數差距很大,以至於銅非等向沉積在金八面體上,導致最後形成的金-銅核殼結構奈米晶體,其金核不在中心。接著針對不同粒徑的立方體和八面體對其局部表面電漿共振性質進行研究及探討,八面體在光學上發現,當奈米粒子變大時,其表面電漿共振有些微的紅位移,而立方體在光學上,其吸收帶紅位移現象隨著奈米粒子的變大而變小。
接著將金-銅核殼奈米立方體和八面體當作催化劑在50 ºC水溶液中反應三小時,可將苯乙炔和苯基疊氮化合物進行1,3偶極環加成反應,有效合成多樣性的三唑化合物。有趣的是,奈米立方體的催化效果較八面體佳,奈米立方體具選擇性催化合成1,4-三唑化合物,其產率為91%,然而八面體只有46%。接著,將奈米立方體當作催化劑,藉由苯基疊氮化合物和不同的芳香族和脂肪族炔類化合物,進行點擊反應,合成出的產物產率從78%至99%。經由此研究發現,金銅核殼奈米立方體,其表面暴露{100}晶面,進行點擊反應具有良好的產率,且其可在水溶液中反應,對於綠色環境方面為一優異選擇之催化劑。
為了延伸探討多面體的金屬-氧化亞銅奈米晶體光學上的特性,使用一開始合成出的50 nm金-銅奈米立方體當作核,來製備出不同粒徑的立方體、八面體和菱形十二面體的金-銅-氧化亞銅核殼結構奈米晶體。儘管銅和氧化亞銅的晶格常數之間差異非常大,還是可以藉由調控試劑的劑量形成核殼結構。由於晶格常數之間的差異,使氧化亞銅沉積在銅奈米立方體上時會釋放應力,以致於核不會在中間。在光學上,雖然盡可能縮小異質核殼結構奈米晶體之粒徑,但氧化亞銅殼的厚度還是太厚,以至於銅的表面電漿共振吸收無法觀察到,我們認為此吸收收為散射和相對較弱的銅表面電漿重疊在一起所產生的。從光譜上,奈米立方體的氧化亞銅吸收峰相較於其它形狀較為紅位移,再一次證明了晶面效應之存在。
Very few papers have discussed about core–shell nanocrystals with ultralarge lattice mismatches. Generally, for synthesis of core–shell structures the two materials should have a lattice constant mismatch below 5%. In this dissertation, we present a synthetic method for Au@Cu nanocrystals despite the large lattice mismatch between Au and Cu at 11.4%. Then we have used these Au@Cu core–shell nanocrystals to catalyze click reactions for efficient synthesis of diverse triazoles. Finally, we used these Au@Cu core–shell nanocubes for the synthesis of Au@Cu–Cu2O core–shell nanocrystals with cubic, octahedral and rhombic dodecahedral structures and tunable sizes for facet-dependent optical property examination.
In Chapter 2, copper nanocubes with tunable edge lengths over the range from 49 to 136 nm and ultrasmall octahedra with opposite corner distances of 45, 51, and 58 nm have been synthesized in aqueous solutions by reducing CuCl2 or copper acetate with ascorbic acid in the presence of octahedral gold nanocrystal cores and hexadecylamine (HDA) at 100 ºC for 45 min to 1.5 h. Addition of HDA increases the solution pH and acts as a coordinating ligand to the copper ions to facilitate controlled copper shell growth. Due to ultralarge lattice mismatch between Au and Cu, non-uniform copper deposition yields cubes and octahedra with noncentrally located gold cores. The Au–Cu octahedra show little shift in the plasmonic band with increasing particle size. For Au–Cu nanocubes, the degree of absorption band red-shift gets smaller as cube size increases. The Au–Cu nanocubes have shown reasonable reactivity toward 4-nitrophenol reduction at 40 ºC.
In Chapter 3, Au@Cu cubes and octahedra were employed to catalyze 1,3-dipolar cycloaddition reaction between phenylacetylene and benzyl azide in water at 50 ºC for 3 h. Interestingly, the nanocubes were far more efficient in catalyzing this reaction, giving 91% yield of exclusively 1,4-triazole product, while octahedra only recorded 46% yield. The Au‒Cu nanocubes were subsequently employed to catalyze the click reaction between benzyl azide and a broad range of aromatic and aliphatic alkynes. The product yields ranged 78 to 99%. Clearly the Au‒Cu cubes exposing {100} surfaces are an excellent and green catalyst for click reactions.
In Chapter 4, 50 nm Au@Cu cubic cores were used to fabricate Au@Cu–Cu2O core–shell cubes, octahedra, and rhombic dodecahedra with tunable sizes. Despite the unprecedented lattice mismatch of 15.1% between Cu and Cu2O, fine adjustment in the volumes of reagents introduced allows the formation of these heterostructures. To relieve the lattice strain, the metal cores are essentially never found to locate at the particle center, and slight lattice spacing shifts have been recorded. Although efforts have been made to reduce the heterostructure sizes, the Cu2O shells are generally too thick to reveal surface plasmon resonance (SPR) absorption band from the metal cores. Only the Au@Cu–Cu2O cubes with many cores located near the particle corners show observable SPR band red shift, but UV–vis spectra of all particle shapes are still dominated by Cu2O absorption and light scattering bands. Au@Cu–Cu2O cubes consistently show the most red-shifted absorption bands than those of octahedra resulting from the optical facet effects.
Reference 1
(1) Tsuji, M.; Ogino, M.; Matsunaga, M.; Miyamae, N.; Matsuo, R.; Nishio, M.; Alam, M. J. Cryst. Growth Des. 2010, 10, 4085–4090.
(2) Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Ueyama, D.; Nishio, M.; Hikino, S.; Kumagae, H.; Sozana, K.; Kamarudin, K. S. N.; Tang, X.-L. Cryst. Growth Des. 2008, 8, 2528–2536.
(3) Wu, Y.; Jiang, P.; Jiang, M.; Wang, T.-W.; Guo, C.-F.; Xie, S.-S.; Wang, Z.-L. Nanotechnology 2009, 20, 305602.
(4) Chiang, C.; Huang, M. H. Small 2015, 11, 6018–6025.
(5) Tsuji, M.; Yamaguchi, D.; Matsunaga, M.; Alam, M. J. Cryst. Growth Des. 2010, 10, 5129–5135.
(6) Tsuji, M.; Yamaguchi D.; Matsunaga, M.; Ikedo, K. Cryst. Growth Des. 2011, 11, 1995–2005.
(7) Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tain, Z.-Q. J. Am. Chem. Soc. 2008, 130, 6949–6951.
(8) Wang, F.; Li, C.; Sun, L.-D.; Wu, H.; Ming, T.; Wang, J.; Yu, J. C.; Yan, C.-H. J. Am. Chem. Soc. 2011, 133, 1106–1111.
(9) Lee, Y.-W.; Kim, M.; Kim, Z.-H.; Han, S.-W. J. Am. Chem. Soc. 2009, 131, 17036–17037.
(10) Yu, Y.; Zhang, Q.; Liu B.; Lee J.-Y. J. Am. Chem. Soc. 2010, 132, 18258–18265.
(11) Jin, M.; Zhang, H.; Wang, J.; Zhong, X.; Lu, N.; Li, Z.; Xie, Z.; Kim, M. J.; Xia, Y. ACS Nano 2012, 6, 2566–2573.
(12) Kuo, C.-H.; Hua T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871–17878.
(13) Yang, Y.-C.; Wang H.-J.; Whang, J.; Huang J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale, 2014, 6, 4316–4324.
(14) Wang, W.-C.; Lyu, L.-M.; Huang, M. H. Chem. Mater. 2011, 23, 2677–2684.
(15) Kong, L.; Chen, W.; Ma, D.; Yang, Y.; Liu, S.; Huang, S. J. Mater. Chem., 2012, 22, 719–724.
(16) Xu, Z.; Hou, Y.; Sun S. J. Am. Chem. Soc. 2007, 129, 8698–8699.
(17) Yang, A.-L.; Li, S.-P.; Wang, Y.-J.; Wang, L.-L.; Bao, X.-C.; Yang, R.-Q. Trans. Nonferrous Met. Soc. China 2015, 25, 3643–3650.
(18) Ma, Y.; Li, W.; Cho, E.-C.; Li, Z.; Yu, T.; Zeng, J.; Xie, Z.; Xia, Y. ACS Nano 2010, 4, 6725–6734
(19) Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993–20000.
(20) Kolasinski, K. W. Surface science: foundations of catalysis and nanoscience;2nd ed.; Wiley: Chichester, England; Hoboken, NJ, 2008.
(21) Tsao, Y.-C.; Rej, S.; Chiu C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396−404.
(22) Jing, H.; Large, N.; Zhang, Q.; Wang, H. J. Phys. Chem. C 2014, 118, 19948−19963
(23) Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale 2015, 7, 11135−11141.
(24) Hsu, S.-C.; Liu, S.-Y.; Wang, H.-J.; Huang, M. H. Small 2015, 11, 195–201.
(25) Huang, M. H.; Naresh, G.; Chen, H.-S. ACS Appl. Mater. Interfaces 2018, 10, 4–15.
(26) Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Chem. Mater. 2016, 28, 5140−5146.
Reference 2
(1) Chiu; C.-Y.; Huang, M. H. J. Mater. Chem. A 2013, 1, 8081–8092.
(2) Kim, D. Y.; Im, S. H.; Park, O. O.; Lim, Y. T. CrystEngComm 2010, 12, 116–121.
(3) Xia, X.; Zeng, J.; McDearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 12542–12546.
(4) Chiang, C.; Huang, M. H. Small 2015, 11, 6018–6025.
(5) Tsao, Y.-C.; Rej, S.; Chiu, C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396–404.
(6) Niu, W.; Zhang, L.; Xu, G. ACS Nano 2010, 4, 1987–2010.
(7) Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y. Adv. Funct. Mater. 2009, 19, 189–200.
(8) Liu, S.-Y.; Shen, Y.-T.; Chiu, C.-Y.; Rej, S.; Lin, P.-H.; Tsao, Y.-C.; Huang, M. H. Langmuir 2015, 31, 6538–6545.
(9) Chiu, C.-Y.; Yang, M.-Y.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale 2014, 6, 7656–7665.
(10) Kim, M.; Kim, Y.; Hong, J. W.; Ahn, S.; Kim, W. Y.; Han, S. W. Chem. Commun. 2014, 50, 9454–9457.
(11) Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M. H. Chem.–Eur. J. 2014, 20, 15991–15997.
(12) Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757–23763.
(13) Chanda, K.; Rej, S.; Liu, S.-Y.; Huang, M. H. ChemCatChem 2015, 7, 1813–1817.
(14) Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993–20000.
(15) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785‒1793.
(16) Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Chem. Mater. 2015, 27, 8185‒8188.
(17) Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Nanoscale 2013, 5, 2394‒2402.
(18) Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 10560–10564.
(19) Tsuji, M.; Yamaguchi, D.; Matsunaga, M.; Alam, M. J. Cryst. Growth Des. 2010, 10, 5129–5135.
(20) Jin, M.; Zhang, H.; Wang, J.; Zhong, X.; Lu, N.; Li, Z.; Xie, Z.; Kim, M. J.; Xia, Y. ACS Nano 2012, 6, 2566–2573.
(21) Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.; Wu, C.; Yang, D.; Yin, Y. ACS Nano 2015, 9, 3307–3313.
(22) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570–7574.
(23) Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C. Cryst. Growth Des. 2011, 11, 3375–3380.
(24) Shriver, D. F.; Atkins, P. W. Inorganic Chemistry, W. H. Freeman: New York, 1999; third Ed.; p 709.
(25) Harris, D. C. Quantitative Chemical Analysis; W. H. Freeman: New York, 1991; third Ed.; p AP36.
(26) Lu, C.-L.; Prasad, K. S.; Wu, H.-L.; Ho, J.-a. A.; Huang, M. H. J. Am. Chem. Soc. 2010, 132, 14546–14553.
(27) Chanda, K.; Rej, S.; Huang, M. H. Chem.–Eur. J. 2013, 19, 16036–16043.
(28) Ji, R.; Sun, W.; Chu, Y. RSC Adv. 2014, 4, 6055–6059.
(29) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Chem. Rev. 2011, 111, 3669–3712.
(30) Wang, H.-J.; Yang, K.-S.; Hsu, S.-C.; Huang, M. H. Nanoscale 2016, 8, 965–972.
(31) Sarina, S.; Bai, S.; Huang, Y.; Chen, C.; Jia, J.; Jaatinen, E.; Ayoko, G. A.; Bao, Z.; Zhu, H. Green Chem. 2014, 16, 331341.
Reference 3
(1) (a) Huisgen, R. Pure Appl. Chem. 1989, 61, 613–628; (b) Tornøe, C.-W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064; (c) Rostvtsev, V.-V.; Green, L.-G.; Fokin, V.-V.; Sharpless, K.-B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
(2) (a) Sharpless, K.-B.; Kolb, H.-C. Drug Discovery Today 2003, 8, 1128–1137; (b) Meldel, M.; Tornøe, C.-W. Chem. Rev. 2008, 108, 2952–3015; (c) Kappe, C.-O.; Eycken, E.-V.; Chem. Soc. Rev. 2010, 39, 1280–1290; (d) Decréau, R.-A.; Collman, J. P.; Hosseini, A. Chem. Soc. Rev. 2010, 39, 1291–1301.
(3) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Tetrahedron Lett. 2009, 50, 2358‒2362.
(4) Borah, B.-J.; Dutta, D.; Saikia, P.-P.; Barua, N.-C.; Dutta, D.-K. Green Chem. 2011, 13, 3453‒3460.
(5) Gawande, M.-B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.-S. Chem. Rev. 2016, 16, 3722‒3811.
(6) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Org. Biomol. Chem. 2011, 9, 6385‒6395.
(7) Lee, B.-S.; Yi, M.; Chu, S.-Y.; Lee, J.-Y.; Kwon, H.-R.; Lee, K.-R.; Kang, D.; Kim, W.-S.; Lim, H.-B.; Lee, J.; Youn, H.-J.; Chi, D.-Y.; Hur, N.-H. Chem. Commun. 2010, 46, 3935‒3937.
(8) Chanda, K.; Rej, S.; Huang, M.-H. Chem.–Eur. J. 2013, 19, 16036‒16043.
(9) Chanda, K.; Rej, S.; Huang, M.-H. Nanoscale 2013, 5, 12494‒2501.
(10) Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M.-H. Nanoscale 2014, 6, 8704‒8709.
(11) Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M.-H Chem.–Eur. J. 2014, 20, 15991‒15997.
(12) Hsia, C.-F.; Madasu, M.; Huang, M.-H Chem. Mater. 2016, 28, 3073‒3079.
(13) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M.-H Chem. Mater. 2008, 20, 7570‒7574.
(14) Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Nanoscale 2013, 5, 2394‒2402.
(15) Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Chem. Mater. 2015, 27, 8185‒8188.
(16) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785‒1793.
(17) Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Langmuir 2010, 26, 12307‒12313.
(18) O’Neil, E.-J.; DiVittorio, K.-M.; Smith, B.-D. Org. Lett. 2007, 9, 199‒202.
(19) Siyang, H.-X.; Liu, H.-L.; Wu, X.-Y.; Liu, P.-N. RSC Adv. 2015, 5, 4693‒4697.
(20) Shin, J.-A.; Lim, Y.-G.; Lee, K.-H. J. Org. Chem. 2012, 77, 4117‒4122.
(21) Rej, S.; Hsia, C.-F.; Chen, T.-Y.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Angew. Chem., Int. Ed. 2016, 55, 7222‒7226.
(22) Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757‒23763.
(23) Tsao, Y.-C.; Rej, S.; Chiu, C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396‒404.
(24) Maity, P.; Takano, S.; Yamazoe, S.; Wakabayashi, T.; Tsukuda, T. J. Am. Chem. Soc. 2013, 135, 9450‒9457.
(25) Zhang, S.; Chandra, K.-L.; Gorman, C.-B. J. Am. Chem. Soc. 2007, 129, 4876‒4877.
(26) Kang, X.; Zuckerman, N.-B.; Konopelski, J.-P.; Chen, S. Angew. Chem., Int. Ed. 2010, 49, 9496‒9499.
Reference 4
(1) Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale 2014, 6, 4316‒4324.
(2) Hsu, S.-C.; Liu, S.-Y.; Wang, H.-J.; Huang, M. H. Small 2015, 11, 195–201.
(3) Huang, M. H.; Rej, S.; Chiu, C.-Y. Small 2015, 11, 2716–2726.
(4) Wang, H.-J.; Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Nanoscale 2016, 8, 965‒972.
(5) Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale 2015, 7, 11135‒11141.
(6) Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Chem. Mater. 2016, 28, 5140‒5146.
(7) Meir, N.; Jen-La Plante, I.; Flomin, K.; Chockler, E.; Moshofsky, B.; Diab, M.; Volokh, M.; Mokari, T. J. Mater. Chem. A 2013, 1, 1763‒1769.
(8) Kong, L.; Chen, W.; Ma, D.; Yang, Y.; Liu, S.; Huang, S. J. Mater. Chem. 2012, 22, 719–724.
(9) Zhang, L.; Blom, D. A.; Wang, H. Chem. Mater. 2011, 23, 4587‒4598.
(10) Zhang, L.; Jing, H.; Boisvert, G.; He, J. Z.; Wang, H. ACS Nano 2012, 6, 3514‒3527.
(11) Jing, H.; Large, N.; Zhang, Q.; Wang, H. J. Phys. Chem. C 2014, 118, 19948‒19963.
(12) Liu, D.-Y.; Ding, S.-Y.; Lin, H.-X.; Liu, B.-J.; Ye, Z.-Z.; Fan, F.-R.; Ren, B.; Tian, Z.-Q. J. Phys. Chem. C 2012, 116, 4477‒4483.
(13) Zhang, S.; Jiang, R.; Guo, Y.; Yang, B.; Chen, X.-L.; Wang, J.; Zhao, Y. Small 2016, 12, 4264‒4276.
(14) Lu, B.; Liu, A.; Wu, H.; Shen, Q.; Zhao, T.; Wang, J. Langmuir 2016, 32, 3085–3094.
(15) Wang, Y.; Zheng, M.; Liu, S.; Wang, Z. Nanoscale Res. Lett. 2016, 11, 390.
(16) Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155–2160.
(17) Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Chem. Asian J. 2017, 12, 293–297.
(18) Tan, C.-S.; Huang, M. H. Chem.‒Eur. J. 2017, 23, 11866‒11871.
(19) Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Angew. Chem., Int. Ed. 2017, 56, 15339‒15343.
(20) Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Chem. Eur. J. 2016, 22, 12548–12556.
(21) Chu, C.-Y.; Huang, M. H. J. Mater. Chem. A 2017, 5, 15116–15123.
(22) Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2017, 9, 39086‒39093.
(23) Huang, M. H.; Naresh, G.; Chen, H.-S. ACS Appl. Mater. Interfaces 2018, 10, 4–15.
(24) Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Small 2016, 12, 3530‒3534.
(25) Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722‒3811.
(26) Thoka, S.; Madasu, M.; Hsia, C.-F.; Liu, S.-Y.; Huang, M. H. Chem. Asian J. 2017, 12, 2318‒2322.
(27) Hsia, C.-F.; Madasu, M.; Huang, M. H. Chem. Mater. 2016, 28, 3073‒3079.
(28) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570–7574.
(29) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159–14164.
(30) Chiu, C.-Y.; Huang, M. H. Angew. Chem., Int. Ed. 2013, 52, 12709–12713.
(31) Ribbing, C. G.; Roos, A. In Handbook of Optical Constants of Solids; E. D. Palik, Ed.; Academic Press: San Diego, 1991; Vol. 2, pp 875–882.
(32) Bradhan, R.; Grady, N. K.; Ali, T.; Halas, N. J. ACS Nano 2010, 4, 6169–6179.