簡易檢索 / 詳目顯示

研究生: 夏季莆
Hsia, Chi-Fu
論文名稱: 合成核不在中心之金-銅核殼結構奈米晶體行點擊反應及製備金-銅-氧化亞銅奈米晶體以鑑定其光學性質之晶面效應
Synthesis of Au–Cu Core–Shell Nanocrystals with Noncentrally Located Cores for Click Reactions and the Fabrication of Au@Cu–Cu2O Nanocrystals for Facet-Dependent Optical Property Characterization
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 王素蘭
Wang, Sue-Lein
段興宇
Tuan, Hsing-Yu
呂明諺
Lu, Ming-Yen
劉學儒
Liu, Hsueh-Ju
吳欣倫
Wu, Hsin-Lun
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 114
中文關鍵詞: 氧化亞銅點擊反應
外文關鍵詞: Copper, Cu2O, Click reaction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究合成的材料為金-銅核殼結構之奈米立方體及八面體,藉由調控此奈米晶體的大小來探討其對光學性質的影響,並應用此材料作為催化劑進行點擊反應,合成多樣的三唑化合物,最後將此材料當作核殼結構的核來合成不同形狀和粒徑之金-銅-氧化亞銅核殼結構奈米晶體,探討三種不同形狀的核殼結構對光學性質的影響。
    此研究使用之化學合成方法為在水相環境中製備金-銅核殼的奈米結構,利用35奈米的金八面體當作模板進行金-銅核殼異質結構的合成。在100 ºC下,反應時間45分鐘到一個半小時間,將十六胺加入到水溶液,接著加入氯化亞銅或醋酸銅、金八面體和維生素C並調控劑量,可以合成出不同粒徑之金-銅核殼結構奈米立方體和八面體。實驗結果發現,十六胺除了會增加溶液的酸鹼值也會和銅離子進行配位形成銅胺錯合物。由於金銅之間的晶格常數差距很大,以至於銅非等向沉積在金八面體上,導致最後形成的金-銅核殼結構奈米晶體,其金核不在中心。接著針對不同粒徑的立方體和八面體對其局部表面電漿共振性質進行研究及探討,八面體在光學上發現,當奈米粒子變大時,其表面電漿共振有些微的紅位移,而立方體在光學上,其吸收帶紅位移現象隨著奈米粒子的變大而變小。
    接著將金-銅核殼奈米立方體和八面體當作催化劑在50 ºC水溶液中反應三小時,可將苯乙炔和苯基疊氮化合物進行1,3偶極環加成反應,有效合成多樣性的三唑化合物。有趣的是,奈米立方體的催化效果較八面體佳,奈米立方體具選擇性催化合成1,4-三唑化合物,其產率為91%,然而八面體只有46%。接著,將奈米立方體當作催化劑,藉由苯基疊氮化合物和不同的芳香族和脂肪族炔類化合物,進行點擊反應,合成出的產物產率從78%至99%。經由此研究發現,金銅核殼奈米立方體,其表面暴露{100}晶面,進行點擊反應具有良好的產率,且其可在水溶液中反應,對於綠色環境方面為一優異選擇之催化劑。
    為了延伸探討多面體的金屬-氧化亞銅奈米晶體光學上的特性,使用一開始合成出的50 nm金-銅奈米立方體當作核,來製備出不同粒徑的立方體、八面體和菱形十二面體的金-銅-氧化亞銅核殼結構奈米晶體。儘管銅和氧化亞銅的晶格常數之間差異非常大,還是可以藉由調控試劑的劑量形成核殼結構。由於晶格常數之間的差異,使氧化亞銅沉積在銅奈米立方體上時會釋放應力,以致於核不會在中間。在光學上,雖然盡可能縮小異質核殼結構奈米晶體之粒徑,但氧化亞銅殼的厚度還是太厚,以至於銅的表面電漿共振吸收無法觀察到,我們認為此吸收收為散射和相對較弱的銅表面電漿重疊在一起所產生的。從光譜上,奈米立方體的氧化亞銅吸收峰相較於其它形狀較為紅位移,再一次證明了晶面效應之存在。


    Very few papers have discussed about core–shell nanocrystals with ultralarge lattice mismatches. Generally, for synthesis of core–shell structures the two materials should have a lattice constant mismatch below 5%. In this dissertation, we present a synthetic method for Au@Cu nanocrystals despite the large lattice mismatch between Au and Cu at 11.4%. Then we have used these Au@Cu core–shell nanocrystals to catalyze click reactions for efficient synthesis of diverse triazoles. Finally, we used these Au@Cu core–shell nanocubes for the synthesis of Au@Cu–Cu2O core–shell nanocrystals with cubic, octahedral and rhombic dodecahedral structures and tunable sizes for facet-dependent optical property examination.
    In Chapter 2, copper nanocubes with tunable edge lengths over the range from 49 to 136 nm and ultrasmall octahedra with opposite corner distances of 45, 51, and 58 nm have been synthesized in aqueous solutions by reducing CuCl2 or copper acetate with ascorbic acid in the presence of octahedral gold nanocrystal cores and hexadecylamine (HDA) at 100 ºC for 45 min to 1.5 h. Addition of HDA increases the solution pH and acts as a coordinating ligand to the copper ions to facilitate controlled copper shell growth. Due to ultralarge lattice mismatch between Au and Cu, non-uniform copper deposition yields cubes and octahedra with noncentrally located gold cores. The Au–Cu octahedra show little shift in the plasmonic band with increasing particle size. For Au–Cu nanocubes, the degree of absorption band red-shift gets smaller as cube size increases. The Au–Cu nanocubes have shown reasonable reactivity toward 4-nitrophenol reduction at 40 ºC.
    In Chapter 3, Au@Cu cubes and octahedra were employed to catalyze 1,3-dipolar cycloaddition reaction between phenylacetylene and benzyl azide in water at 50 ºC for 3 h. Interestingly, the nanocubes were far more efficient in catalyzing this reaction, giving 91% yield of exclusively 1,4-triazole product, while octahedra only recorded 46% yield. The Au‒Cu nanocubes were subsequently employed to catalyze the click reaction between benzyl azide and a broad range of aromatic and aliphatic alkynes. The product yields ranged 78 to 99%. Clearly the Au‒Cu cubes exposing {100} surfaces are an excellent and green catalyst for click reactions.
    In Chapter 4, 50 nm Au@Cu cubic cores were used to fabricate Au@Cu–Cu2O core–shell cubes, octahedra, and rhombic dodecahedra with tunable sizes. Despite the unprecedented lattice mismatch of 15.1% between Cu and Cu2O, fine adjustment in the volumes of reagents introduced allows the formation of these heterostructures. To relieve the lattice strain, the metal cores are essentially never found to locate at the particle center, and slight lattice spacing shifts have been recorded. Although efforts have been made to reduce the heterostructure sizes, the Cu2O shells are generally too thick to reveal surface plasmon resonance (SPR) absorption band from the metal cores. Only the Au@Cu–Cu2O cubes with many cores located near the particle corners show observable SPR band red shift, but UV–vis spectra of all particle shapes are still dominated by Cu2O absorption and light scattering bands. Au@Cu–Cu2O cubes consistently show the most red-shifted absorption bands than those of octahedra resulting from the optical facet effects.

    Contents 論文摘要…………………………………………………………………Ⅰ Abstract of the Dissertation…………………………………...............Ⅲ Contents……………………………………………………………….ⅥⅠ List of Figures………………………………………………………….ⅩⅠ List of Tables…………………………………………………………ⅩⅠⅩ List of Schemes……………………………………………………ⅩⅩⅠⅩ List of Publications………………………………………………...ⅩⅩⅠⅤ Chapter 1 Overview of the Dissertation 1.1 Introduction to the Shape Controlled Core–Shell Heterostructures 1 1.2 Paper Review 5 1.2.1 Synthesis of Shape–Controlled Core–Shell Nanocrystals 5 1.2.2 Optical and Plasmonic Properties of Core–Shell Nanoparticles 10 1.3 References 16 Chapter 2 Aqueous Phase Synthesis of Au–Cu Core–Shell Nanocubes and Octahedra with Tunable Sizes and Noncentrally Located Cores 2.1 Introduction 19 2.2 Experimental Section 21 2.2.1 Chemicals 21 2.2.2 Synthesis of 35 nm Octahedral Au Nanocrystals 21 2.2.3 Synthesis of Au−Cu Core−Shell Nanocubes and Octahedra with Tunable Sizes 22 2.2.4 Use of Au–Cu Nanocubes for 4-Nitrophenol Reduction 24 2.2.5 Instrumentation 25 2.3 Results and Discussion 26 2.4 Conclusion 44 2.5 References 45 Chapter 3 Au‒Cu Core‒Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles 3.1 Introduction 49 3.2 Experimental Section 51 3.2.1 Chemicals 51 3.2.2 Synthesis of Au−Cu Core−Shell Nanocubes and Octahedra 51 3.2.3 Use of Au‒Cu Core‒Shell Nanocrystals-Catalyzed Click Reactions for Synthesis of Diverse Triazoles 52 3.2.4 Instrumentation 53 3.2.5 Turnover Frequency Calculations 53 3.3 Results and Discussion 56 3.4 Conclusion 67 3.5 References 68 Chapter 4 Unusually Large Lattice Mismatch-Induced Optical Behaviors of Au@Cu–Cu2O Core–Shell Nanocrystals with Noncentrally Located Cores 4.1 Introduction 71 4.2 Experimental Section 74 4.2.1 Chemicals 74 4.2.2 Synthesis of Au@Cu–Cu2O Core–Shell Nanocrystals 74 4.2.3 Instrumentation 77 4.3 Results and Discussion 78 4.4 Conclusion 94 4.5 References 95 List of Figures Chapter 1 Overview of the Dissertation Figure 1.1.1 TEM images of Au@Ag core–shell nanocubes 2 Figure 1.1.2 SEM and TEM images of ultrasmall Au–Ag core–shell cubes. 3 Figure 1.1.3 SEM images of the synthesized Au–Pd core-shell nanocrystals with octahedral, truncated octahedral, cuboctahedral, truncated cubic, and concave cubic shapes. 4 Figure 1.2.1 Three modes of thermodynamically controlled growth of a solid overlayer A on solid substrate B in the presence of a gas (or more generally a fluid or vacuum). 6 Figure 1.2.2 SEM, HRTEM, HAADF-STEM, and HAADF-STEM-EDS mapping images of the Au@Pd nanooctahedra.. 7 Figure 1.2.3 SEM images of Au−Ag core−shell nanocubes, truncated cubes, cuboctahedra, truncated octahedra, and octahedra viewed at different magnifications . 8 Figure 1.2.4 TEM image of 18-nm Pd nanocubes, and SEM images of Pd@Cu core-shell nanocubes prepared with different volumes of the seed suspension 9 Figure 1.2.5 TEM images of Au core and Au@Cu nanocrystals prepared using the polyol method. 10 Figure 1.2.6 Growth of Cu2O nanoshells on truncated Ag nanocubes (40 nm in edge length) with different shapes. UV-vis spectra of 40 nm truncated nanocubes and Ag–Cu2O core–shell nanoparticles with various shell thickness 11 Figure 1.2.7 Growth of Cu2O nanoshells on Ag nanocubes (100 nm in edge length) with different shell thickness. UV-vis spectra of 100 nm nanocubes and Ag–Cu2O core–shell nanoparticles with various shell thickness. 11 Figure 1.2.8 UV-vis absorption spectra of the Pd–Cu2O core–shell octahedral and cubes 12 Figure 1.2.9 SEM images of the synthesized Au–Cu2O core–shell rhombic dodecahedra, octahedra, and cubes using 35-nm octahedral gold cores 13 Figure 1.2.10 UV-vis absorption spectra of Au–Cu2O core–shell rhombic dodecahedra, octahedra, and cubes. 14 Figure 1.2.11 SEM images of Au@Ag−Cu2O core−shell cuboctahedra and truncated octahedra with average sizes with average sizes 15 Figure 1.2.12 UV−vis absorption spectra of Au@Ag−Cu2O rhombic dodecahedra, truncated octahedra, and cuboctahedra with tunable sizes 15 Chapter 2 Aqueous Phase Synthesis of Au–Cu Core–Shell Nanocubes and Octahedra with Tunable Sizes and Non-Centrally Located Cores Figure 2.3.1 SEM image of the octahedral gold nanocrystals and UV–vis absorption spectrum of the particles. 26 Figure 2.3.2 SEM images of Au–Cu core–shell nanocubes with average edge lengths 27 Figure 2.3.3 Size distribution histograms for the synthesized Au–Cu core–shell nanocubes with average sizes 28 Figure 2.3.4 XRD patterns of Au–Cu core–shell cubes and octahedra.. 29 Figure 2.3.5 UV–vis absorption spectra of a CuCl2 solution, a mixed solution of CuCl2 and HDA, and a CuCl solution. 31 Figure 2.3.6 TEM images of Au–Cu core–shell nanocubes with average edge lengths 32 Figure 2.3.7 TEM, SAED pattern and EDS line scan data characterization techniques for Au–Cu core–shell nanocube.. 33 Figure 2.3.8 HR-TEM image of the edge region of a Au–Cu nanocube 34 Figure 2.3.9 XPS spectra of Au–Cu core–shell cubes and octahedra 35 Figure 2.3.10 TEM images of intermediate particles sampled at different points. 37 Figure 2.3.11 SEM images of Au–Cu core–shell octahedra with different sizes 38 Figure 2.3.12 Size distribution histograms for the synthesized Au–Cu core–shell octahedra with average sizes. 38 Figure 2.3.13 TEM images of Au–Cu core–shell octahedra with different sizes 39 Figure 2.3.14 TEM image of a Au–Cu core–shell octahedron and EDS line scan on a Au–Cu octahedron 40 Figure 2.3.15 UV–vis absorption spectra of Au–Cu cubes and octahedra with tunable sizes 41 Figure 2.3.16 A plot of SPR absorption band positions of the synthesized Au–Cu nanocubes as a function of their edge lengths 42 Figure 2.3.17 Time-dependent UV–vis absorption spectra of 4-nitrophenol reduction using 78 nm Au–Cu nanocubes as the catalyst and the corresponding plot of ln(Ct/C0) vs. time. 43 Chapter 3 Au‒Cu Core‒Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles Figure 3.3.1 TEM images of the synthesized Au‒Cu nanocubes and octahedra. 57 Figure 3.3.2 SEM images of Au‒Cu nanocubes and octahedra before and after the catalytic reaction 58 Figure 3.3.3 XRD patterns of Au‒Cu nanocubes and octahedra 59 Figure 3.3.4 FI-IR spectra of phenylacetylene and Au@Cu:C≡CPh. 63 Figure 3.3.5 Plot showing percent yields of 1-benzyl-4-phenyl-1H-1,2,3-triazole 64 Chapter 4 Unusually Large Lattice Mismatch-Induced Optical Behaviors of Au@Cu–Cu2O Core–Shell Nanocrystals with Noncentrally Located Cores Figure 4.3.1 SEM images and UV-vis absorption spectrum of the 35 nm Au octahedra and the 55 nm Au@Cu core-shell nanocubes. 79 Figure 4.3.2 SEM images of the synthesized Au@Cu–Cu2O core−shell octahedra with different sizes 79 Figure 4.3.3 SEM images of the synthesized Au@Cu–Cu2O core–shell nanocubes with different sizes 80 Figure 4.3.4 Size distribution histograms for the synthesized Au@Cu–Cu2O core–shell nanocubes with different sizes 81 Figure 4.3.5 Size distribution histograms for the synthesized Au@Cu–Cu2O core–shell octahedra with different sizes 82 Figure 4.3.6 SEM images of the synthesized Au@Cu–Cu2O core−shell rhombic dodecahedra with different sizes 83 Figure 4.3.7 Size distribution histograms for the synthesized Au@Cu–Cu2O core–shell rhombic dodecahedron with different sizes 84 Figure 4.3.8 TEM images of Au@Cu–Cu2O nanocubes, octahedra, and rhombic dodecahedra taken from the 169 nm 86 Figure 4.3.9 TEM images of the synthesized 169 nm Au@Cu–Cu2O rhombic dodecahedra. 87 Figure 4.3.10 TEM, SAED pattern and EDS line scan data characterization techniques for Au@Cu–Cu2O core−shell nanocube 87 Figure 4.3.11 XRD patterns of the 192 nm Au@Cu–Cu2O nanocubes, 299 nm Au@Cu–Cu2O octahedra, 169 nm Au@Cu–Cu2O rhombic dodecahedra, 55 nm Au@Cu nanocubes, and 400 nm Cu2O cubes 89 Figure 4.3.12 Comparison of the (111) and (200) peak positions for the synthesized Cu2O octahedra and Au@Cu–Cu2O octahedra. 90 Figure 4.3.13 UV−vis absorption spectra of Au@Cu–Cu2O rhombic dodecahedra, octahedra, and cubes with tunable sizes 92 Figure 4.3.14 Plot of the light scattering band positions for Au@Cu–Cu2O cubes, octahedra, and rhombic dodecahedra with tunable sizes and plot of the absorption band positions for Au@Cu–Cu2O cubes and octahedra with tunable sizes.. 93 List of Tables Chapter 2 Aqueous Phase Synthesis of Au–Cu Core–Shell Nanocubes and Octahedra with Tunable Sizes and Non-Centrally Located Cores Table 2.2.1 Exact reagent amounts used to synthesize Au–Cu core–shell nanocubes with tunable sizes. 23 Table 2.2.2 Exact reagent amounts used to synthesize Au–Cu core–shell nanoctahedra with tunables sizes 24 Table 2.3.1 Standard deviations of the sizes of the Au–Cu core–shell nanocubes. 28 Table 2.3.2 Standard deviations of the sizes of the Au–Cu core–shell octahedra. 38 Chapter 3 Au‒Cu Core‒Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles Table 3.3.1 Reaction conditions used for the Au‒Cu nanocrystal-catalyzed click reaction. 61 Table 3.3.2 Diverse products formed using a broad range of substrates for Au@Cu nanocube-catalyzed click reaction. 66 Chapter 4 Unusually Large Lattice Mismatch-Induced Optical Behaviors of Au@Cu–Cu2O Core–Shell Nanocrystals with Noncentrally Located Cores Table 4.2.1 Exact reagent amounts used to synthesize Au@Cu–Cu2O core–shell nanocubes with tunable sizes 76 Table 4.2.2 Exact reagent amounts used to synthesize Au@Cu–Cu2O core–shell octahedra with tunable sizes 76 Table 4.2.3 Exact reagent amounts used to synthesize Au@Cu–Cu2O core–shell rhombic dodecahedra with tunable sizes. 77 Table 4.3.1 Standard deviations of the sizes of the Au@Cu–Cu2O core–shell nanocubes. 81 Table 4.3.2 Standard deviations of the sizes of the Au@Cu–Cu2O core–shell octahedra. 83 Table 4.3.3 Standard deviations of the sizes of the Au@Cu–Cu2O core–shell rhombic dodecahedra. 84 Table 4.3.4 Extents of XRD peak shifts in Au@Cu–Cu2O cubes, octahedra, and rhombic dodecahedra compared to the peak positions of pristine Cu2O octahedra. 90 List of Scheme Chapter 2 Aqueous Phase Synthesis of Au–Cu Core–Shell Nanocubes and Octahedra with Tunable Sizes and Noncentrally Located Cores Scheme 2.2.1 Schematic illustration of the procedure used to synthesize Au–Cu core–shell nanocubes 23 Scheme 2.2.2 Schematic illustration of the procedure used to synthesize Au-Cu core–shell nanooctahedra 24 Chapter 4 Unusually Large Lattice Mismatch-Induced Optical Behaviors of Au@Cu–Cu2O Core–Shell Nanocrystals with Noncentrally Located Cores Scheme 4.2.1 Schematic illustration of the procedure used to synthesize Au@Cu–Cu2O core–shell cubes 75 Scheme 4.2.2 Schematic illustration of the procedure used to synthesize Au@Cu–Cu2O core–shell octahedra 76 Scheme 4.2.3 Schematic illustration of the procedure used to synthesize Au@Cu–Cu2O core–shell rhombic dodecahedra 77

    Reference 1

    (1) Tsuji, M.; Ogino, M.; Matsunaga, M.; Miyamae, N.; Matsuo, R.; Nishio, M.; Alam, M. J. Cryst. Growth Des. 2010, 10, 4085–4090.
    (2) Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Ueyama, D.; Nishio, M.; Hikino, S.; Kumagae, H.; Sozana, K.; Kamarudin, K. S. N.; Tang, X.-L. Cryst. Growth Des. 2008, 8, 2528–2536.
    (3) Wu, Y.; Jiang, P.; Jiang, M.; Wang, T.-W.; Guo, C.-F.; Xie, S.-S.; Wang, Z.-L. Nanotechnology 2009, 20, 305602.
    (4) Chiang, C.; Huang, M. H. Small 2015, 11, 6018–6025.
    (5) Tsuji, M.; Yamaguchi, D.; Matsunaga, M.; Alam, M. J. Cryst. Growth Des. 2010, 10, 5129–5135.
    (6) Tsuji, M.; Yamaguchi D.; Matsunaga, M.; Ikedo, K. Cryst. Growth Des. 2011, 11, 1995–2005.
    (7) Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tain, Z.-Q. J. Am. Chem. Soc. 2008, 130, 6949–6951.
    (8) Wang, F.; Li, C.; Sun, L.-D.; Wu, H.; Ming, T.; Wang, J.; Yu, J. C.; Yan, C.-H. J. Am. Chem. Soc. 2011, 133, 1106–1111.
    (9) Lee, Y.-W.; Kim, M.; Kim, Z.-H.; Han, S.-W. J. Am. Chem. Soc. 2009, 131, 17036–17037.
    (10) Yu, Y.; Zhang, Q.; Liu B.; Lee J.-Y. J. Am. Chem. Soc. 2010, 132, 18258–18265.
    (11) Jin, M.; Zhang, H.; Wang, J.; Zhong, X.; Lu, N.; Li, Z.; Xie, Z.; Kim, M. J.; Xia, Y. ACS Nano 2012, 6, 2566–2573.
    (12) Kuo, C.-H.; Hua T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871–17878.
    (13) Yang, Y.-C.; Wang H.-J.; Whang, J.; Huang J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale, 2014, 6, 4316–4324.
    (14) Wang, W.-C.; Lyu, L.-M.; Huang, M. H. Chem. Mater. 2011, 23, 2677–2684.
    (15) Kong, L.; Chen, W.; Ma, D.; Yang, Y.; Liu, S.; Huang, S. J. Mater. Chem., 2012, 22, 719–724.
    (16) Xu, Z.; Hou, Y.; Sun S. J. Am. Chem. Soc. 2007, 129, 8698–8699.
    (17) Yang, A.-L.; Li, S.-P.; Wang, Y.-J.; Wang, L.-L.; Bao, X.-C.; Yang, R.-Q. Trans. Nonferrous Met. Soc. China 2015, 25, 3643–3650.
    (18) Ma, Y.; Li, W.; Cho, E.-C.; Li, Z.; Yu, T.; Zeng, J.; Xie, Z.; Xia, Y. ACS Nano 2010, 4, 6725–6734
    (19) Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993–20000.
    (20) Kolasinski, K. W. Surface science: foundations of catalysis and nanoscience;2nd ed.; Wiley: Chichester, England; Hoboken, NJ, 2008.
    (21) Tsao, Y.-C.; Rej, S.; Chiu C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396−404.
    (22) Jing, H.; Large, N.; Zhang, Q.; Wang, H. J. Phys. Chem. C 2014, 118, 19948−19963

    (23) Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale 2015, 7, 11135−11141.
    (24) Hsu, S.-C.; Liu, S.-Y.; Wang, H.-J.; Huang, M. H. Small 2015, 11, 195–201.
    (25) Huang, M. H.; Naresh, G.; Chen, H.-S. ACS Appl. Mater. Interfaces 2018, 10, 4–15.
    (26) Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Chem. Mater. 2016, 28, 5140−5146.

    Reference 2

    (1) Chiu; C.-Y.; Huang, M. H. J. Mater. Chem. A 2013, 1, 8081–8092.
    (2) Kim, D. Y.; Im, S. H.; Park, O. O.; Lim, Y. T. CrystEngComm 2010, 12, 116–121.
    (3) Xia, X.; Zeng, J.; McDearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 12542–12546.
    (4) Chiang, C.; Huang, M. H. Small 2015, 11, 6018–6025.
    (5) Tsao, Y.-C.; Rej, S.; Chiu, C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396–404.
    (6) Niu, W.; Zhang, L.; Xu, G. ACS Nano 2010, 4, 1987–2010.
    (7) Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y. Adv. Funct. Mater. 2009, 19, 189–200.
    (8) Liu, S.-Y.; Shen, Y.-T.; Chiu, C.-Y.; Rej, S.; Lin, P.-H.; Tsao, Y.-C.; Huang, M. H. Langmuir 2015, 31, 6538–6545.
    (9) Chiu, C.-Y.; Yang, M.-Y.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale 2014, 6, 7656–7665.
    (10) Kim, M.; Kim, Y.; Hong, J. W.; Ahn, S.; Kim, W. Y.; Han, S. W. Chem. Commun. 2014, 50, 9454–9457.
    (11) Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M. H. Chem.–Eur. J. 2014, 20, 15991–15997.
    (12) Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757–23763.
    (13) Chanda, K.; Rej, S.; Liu, S.-Y.; Huang, M. H. ChemCatChem 2015, 7, 1813–1817.
    (14) Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 19993–20000.
    (15) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785‒1793.
    (16) Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Chem. Mater. 2015, 27, 8185‒8188.
    (17) Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Nanoscale 2013, 5, 2394‒2402.
    (18) Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 10560–10564.
    (19) Tsuji, M.; Yamaguchi, D.; Matsunaga, M.; Alam, M. J. Cryst. Growth Des. 2010, 10, 5129–5135.
    (20) Jin, M.; Zhang, H.; Wang, J.; Zhong, X.; Lu, N.; Li, Z.; Xie, Z.; Kim, M. J.; Xia, Y. ACS Nano 2012, 6, 2566–2573.
    (21) Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.; Wu, C.; Yang, D.; Yin, Y. ACS Nano 2015, 9, 3307–3313.
    (22) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570–7574.
    (23) Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C. Cryst. Growth Des. 2011, 11, 3375–3380.
    (24) Shriver, D. F.; Atkins, P. W. Inorganic Chemistry, W. H. Freeman: New York, 1999; third Ed.; p 709.
    (25) Harris, D. C. Quantitative Chemical Analysis; W. H. Freeman: New York, 1991; third Ed.; p AP36.
    (26) Lu, C.-L.; Prasad, K. S.; Wu, H.-L.; Ho, J.-a. A.; Huang, M. H. J. Am. Chem. Soc. 2010, 132, 14546–14553.
    (27) Chanda, K.; Rej, S.; Huang, M. H. Chem.–Eur. J. 2013, 19, 16036–16043.
    (28) Ji, R.; Sun, W.; Chu, Y. RSC Adv. 2014, 4, 6055–6059.
    (29) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Chem. Rev. 2011, 111, 3669–3712.
    (30) Wang, H.-J.; Yang, K.-S.; Hsu, S.-C.; Huang, M. H. Nanoscale 2016, 8, 965–972.
    (31) Sarina, S.; Bai, S.; Huang, Y.; Chen, C.; Jia, J.; Jaatinen, E.; Ayoko, G. A.; Bao, Z.; Zhu, H. Green Chem. 2014, 16, 331341.

    Reference 3

    (1) (a) Huisgen, R. Pure Appl. Chem. 1989, 61, 613–628; (b) Tornøe, C.-W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064; (c) Rostvtsev, V.-V.; Green, L.-G.; Fokin, V.-V.; Sharpless, K.-B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
    (2) (a) Sharpless, K.-B.; Kolb, H.-C. Drug Discovery Today 2003, 8, 1128–1137; (b) Meldel, M.; Tornøe, C.-W. Chem. Rev. 2008, 108, 2952–3015; (c) Kappe, C.-O.; Eycken, E.-V.; Chem. Soc. Rev. 2010, 39, 1280–1290; (d) Decréau, R.-A.; Collman, J. P.; Hosseini, A. Chem. Soc. Rev. 2010, 39, 1291–1301.
    (3) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Tetrahedron Lett. 2009, 50, 2358‒2362.
    (4) Borah, B.-J.; Dutta, D.; Saikia, P.-P.; Barua, N.-C.; Dutta, D.-K. Green Chem. 2011, 13, 3453‒3460.
    (5) Gawande, M.-B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.-S. Chem. Rev. 2016, 16, 3722‒3811.
    (6) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Org. Biomol. Chem. 2011, 9, 6385‒6395.

    (7) Lee, B.-S.; Yi, M.; Chu, S.-Y.; Lee, J.-Y.; Kwon, H.-R.; Lee, K.-R.; Kang, D.; Kim, W.-S.; Lim, H.-B.; Lee, J.; Youn, H.-J.; Chi, D.-Y.; Hur, N.-H. Chem. Commun. 2010, 46, 3935‒3937.
    (8) Chanda, K.; Rej, S.; Huang, M.-H. Chem.–Eur. J. 2013, 19, 16036‒16043.
    (9) Chanda, K.; Rej, S.; Huang, M.-H. Nanoscale 2013, 5, 12494‒2501.
    (10) Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M.-H. Nanoscale 2014, 6, 8704‒8709.
    (11) Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M.-H Chem.–Eur. J. 2014, 20, 15991‒15997.
    (12) Hsia, C.-F.; Madasu, M.; Huang, M.-H Chem. Mater. 2016, 28, 3073‒3079.
    (13) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M.-H Chem. Mater. 2008, 20, 7570‒7574.
    (14) Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Nanoscale 2013, 5, 2394‒2402.
    (15) Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Chem. Mater. 2015, 27, 8185‒8188.
    (16) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785‒1793.
    (17) Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Langmuir 2010, 26, 12307‒12313.
    (18) O’Neil, E.-J.; DiVittorio, K.-M.; Smith, B.-D. Org. Lett. 2007, 9, 199‒202.
    (19) Siyang, H.-X.; Liu, H.-L.; Wu, X.-Y.; Liu, P.-N. RSC Adv. 2015, 5, 4693‒4697.
    (20) Shin, J.-A.; Lim, Y.-G.; Lee, K.-H. J. Org. Chem. 2012, 77, 4117‒4122.
    (21) Rej, S.; Hsia, C.-F.; Chen, T.-Y.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Angew. Chem., Int. Ed. 2016, 55, 7222‒7226.
    (22) Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757‒23763.
    (23) Tsao, Y.-C.; Rej, S.; Chiu, C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396‒404.
    (24) Maity, P.; Takano, S.; Yamazoe, S.; Wakabayashi, T.; Tsukuda, T. J. Am. Chem. Soc. 2013, 135, 9450‒9457.
    (25) Zhang, S.; Chandra, K.-L.; Gorman, C.-B. J. Am. Chem. Soc. 2007, 129, 4876‒4877.
    (26) Kang, X.; Zuckerman, N.-B.; Konopelski, J.-P.; Chen, S. Angew. Chem., Int. Ed. 2010, 49, 9496‒9499.

    Reference 4

    (1) Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale 2014, 6, 4316‒4324.
    (2) Hsu, S.-C.; Liu, S.-Y.; Wang, H.-J.; Huang, M. H. Small 2015, 11, 195–201.
    (3) Huang, M. H.; Rej, S.; Chiu, C.-Y. Small 2015, 11, 2716–2726.
    (4) Wang, H.-J.; Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Nanoscale 2016, 8, 965‒972.
    (5) Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale 2015, 7, 11135‒11141.
    (6) Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Chem. Mater. 2016, 28, 5140‒5146.
    (7) Meir, N.; Jen-La Plante, I.; Flomin, K.; Chockler, E.; Moshofsky, B.; Diab, M.; Volokh, M.; Mokari, T. J. Mater. Chem. A 2013, 1, 1763‒1769.
    (8) Kong, L.; Chen, W.; Ma, D.; Yang, Y.; Liu, S.; Huang, S. J. Mater. Chem. 2012, 22, 719–724.
    (9) Zhang, L.; Blom, D. A.; Wang, H. Chem. Mater. 2011, 23, 4587‒4598.
    (10) Zhang, L.; Jing, H.; Boisvert, G.; He, J. Z.; Wang, H. ACS Nano 2012, 6, 3514‒3527.
    (11) Jing, H.; Large, N.; Zhang, Q.; Wang, H. J. Phys. Chem. C 2014, 118, 19948‒19963.
    (12) Liu, D.-Y.; Ding, S.-Y.; Lin, H.-X.; Liu, B.-J.; Ye, Z.-Z.; Fan, F.-R.; Ren, B.; Tian, Z.-Q. J. Phys. Chem. C 2012, 116, 4477‒4483.
    (13) Zhang, S.; Jiang, R.; Guo, Y.; Yang, B.; Chen, X.-L.; Wang, J.; Zhao, Y. Small 2016, 12, 4264‒4276.
    (14) Lu, B.; Liu, A.; Wu, H.; Shen, Q.; Zhao, T.; Wang, J. Langmuir 2016, 32, 3085–3094.
    (15) Wang, Y.; Zheng, M.; Liu, S.; Wang, Z. Nanoscale Res. Lett. 2016, 11, 390.
    (16) Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155–2160.
    (17) Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Chem. Asian J. 2017, 12, 293–297.
    (18) Tan, C.-S.; Huang, M. H. Chem.‒Eur. J. 2017, 23, 11866‒11871.
    (19) Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Angew. Chem., Int. Ed. 2017, 56, 15339‒15343.
    (20) Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Chem. Eur. J. 2016, 22, 12548–12556.
    (21) Chu, C.-Y.; Huang, M. H. J. Mater. Chem. A 2017, 5, 15116–15123.
    (22) Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2017, 9, 39086‒39093.
    (23) Huang, M. H.; Naresh, G.; Chen, H.-S. ACS Appl. Mater. Interfaces 2018, 10, 4–15.
    (24) Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Small 2016, 12, 3530‒3534.
    (25) Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722‒3811.
    (26) Thoka, S.; Madasu, M.; Hsia, C.-F.; Liu, S.-Y.; Huang, M. H. Chem. Asian J. 2017, 12, 2318‒2322.
    (27) Hsia, C.-F.; Madasu, M.; Huang, M. H. Chem. Mater. 2016, 28, 3073‒3079.
    (28) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570–7574.
    (29) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159–14164.
    (30) Chiu, C.-Y.; Huang, M. H. Angew. Chem., Int. Ed. 2013, 52, 12709–12713.
    (31) Ribbing, C. G.; Roos, A. In Handbook of Optical Constants of Solids; E. D. Palik, Ed.; Academic Press: San Diego, 1991; Vol. 2, pp 875–882.
    (32) Bradhan, R.; Grady, N. K.; Ali, T.; Halas, N. J. ACS Nano 2010, 4, 6169–6179.

    QR CODE