研究生: |
陳冠宇 Chen, Kuan-Yu |
---|---|
論文名稱: |
利用介電泳技術辨認吸附金離子的微藻 Identification of Au ion-adsorbed Microalgae by Dielectrophoresis |
指導教授: |
王翔郁
Wang, Hsiang-Yu |
口試委員: |
李昇憲
Li, Sheng-Shian 張嘉修 Chang, Jo-Shu |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 微藻 、金離子 、介電泳 、雙殼層介電模型 |
外文關鍵詞: | Microalgae, Au ion, Dielectrophoresis, Double-shell dielectric model |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去處理重金屬汙染的方法以物理或化學處理居多,這些方法雖能高效率的吸收重金屬離子,但在處理的過程中可能會同時使用有毒溶劑,對於環境產生雙重傷害,近來使用生物性方法來吸附重金屬離子且同時生成相對應的金屬奈米粒子的研究逐漸受到重視,但生物處理程序需要大量的能源輸入才能收集生物質量,因此本研究冀望建立利用介電泳技術辨認吸附金屬離子微藻的微流體系統,以此建立低能耗、高效率的採收方式。研究項目包括 (1)評估微藻移除溶液中金離子的效率,(2)評估微藻利用溶液中的金屬離子生成金奈米粒子的可能性,並利用FTIR,XRD和UV-Vis光譜儀來驗證奈米粒子的生成,(3)設計基於介電泳的微流體系統來辨別吸附金離子/含金奈米粒子的藻體和(4)建立理論模型來觀察微藻胞內介電係數的變化對介電泳的影響。
實驗結果顯示加入500 μM HAuCl4後,小球藻吸收金離子的效率高達70%,雖然小球藻在低濃度(500 μM)的HAuCl4中可以有效的移除金離子,且從FTIR可觀察出微藻內的胺基官能基的特徵波數吸收度增加,顯示微藻細胞內的蛋白質與金離子有交互作用,但XRD顯示這些金離子並未被合成奈米粒子。若將HAuCl4的濃度提高至1 mM~3 mM,移除效率可高達82~92%,並在UV-Vis的觀測到金奈米粒子特徵吸收峰(540 nm),且吸收峰隨著HAuCl4濃度增加而波長增加。最後,本研究找出了可辨認HAuCl¬4處理的微藻細胞介電泳參數,在電導率分別為0.08 S/m、0.12 S/m和0.16 S/m的緩衝溶液中施加頻率至1 MHz及5 Vpp的電壓,可分離吸附金離子的微藻(正介電泳)以及未吸附金離子的微藻(負介電泳),並成功建立理論模型擬合其介電泳速度,經由擬合的結果顯示微藻細胞膜的相對介電常數和電導率及細胞壁的電導率在吸附金離子後皆有明顯的變化。未吸附前微藻細胞膜的相對介電常數和電導率分別為1.05和4.92×10-6 S/m,吸附後的細胞膜的相對介電常數和電導率為79.48和2.48 S/m; 而微藻細胞壁的電導率由0.74 S/m下降至0.022 S/m。
Physical and chemical methods have been widely used to deal with heavy metal pollution in the waterbody. These methods are efficient in removing heavy metal ions from the environment; however, the process produces toxic waste that causes secondary pollution. Recently, biological methods have gradually gained attention because of the benign conditions and the capability of producing nanoparticles in the process. However, biological treatments need extensive energy input to harvest biomass. Therefore, this project aims to develop a microfluidic device based on the dielectrophoresis technique to collect the Au ion adsorbing microalgae cells to reduce the energy input. The tasks include (1) using microalgae to adsorb gold (Au) ions; (2) evaluating if microalgae can use Au ions to synthesize Au nanoparticles; and (3) designing and fabricating the microfluidic system based on dielectrophoresis to identify Au ion adsorbing microalgae cells and (4) establish a theoretical model to interpret the influence of the Au adsorbing on the dielectric properties of microalgae.
Results show that Chlorella vulgaris removed 70% of Au3+ when 500 μM of HAuCl4 was applied. C. vulgaris effectively removed Au3+ in low concentration of HAuCl4, and the absorbance of characteristic wavenumbers generated by amine functional groups in microalgae increased, indicating that intracellular proteins and Au3+ have interactions. However, XRD showed that Au nanoparticles were not synthesized. When the concentration of HAuCl4 increased from 1 mM to 3 mM, the removal efficiency ranged between 82~92%. UV-Vis spectrometry observed the characteristic absorption peak (540nm) of Au nanoparticles, and the absorption peak shifted as the concentration of HAuCl4 increased.
Finally, this study found the dielectrophoresis parameters capable of separating Au ion adsorbing microalgae cells from untreated ones. Applying a voltage of 1 MHz and 5 Vpp in a buffer solution with the conductivity of 0.08 S/m, 0.12 S/m or 0.16 S/m can separate the Au ion adsorbing microalgae(pDEP) and untreated microalgae(nDEP). A theoretical model was successfully established to fit the experiment dielectrophoresis velocity. The fitting results showed that the relative permittivity and conductivity of the microalgae cell membrane and the conductivity of the cell wall all changed significantly after adsorbing Au ions. The relative permittivity and conductivity of the cell membrane before Au ion adsorbing were 1.05 and 4.92×10-6 S/m, respectively, and the relative permittivity and conductivity of the cell membrane after Au ion adsorbing were 79.48 and 2.48 S/m. The conductivity of the cell wall decreased from 0.74 S/m to 0.022 S/m after the Au ion adsorption.
1. Dixit, R., et al., Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 2015. 7(2): p. 2189-2212.
2. Cheng, S.Y., et al., New prospects for modified algae in heavy metal adsorption. Trends in biotechnology, 2019. 37(11): p. 1255-1268.
3. Zhou, H., et al., Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. International journal of environmental research and public health, 2016. 13(3): p. 289.
4. Chen, G., Electrochemical technologies in wastewater treatment. Separation and purification Technology, 2004. 38(1): p. 11-41.
5. Aziz, H.A., M.N. Adlan, and K.S. Ariffin, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource technology, 2008. 99(6): p. 1578-1583.
6. Juang, R.-S. and R.-C. Shiau, Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of membrane science, 2000. 165(2): p. 159-167.
7. Zhang, F.-S. and H. Itoh, Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere, 2006. 65(1): p. 125-131.
8. Mier, M.V., et al., Heavy metal removal with mexican clinoptilolite:: multi-component ionic exchange. Water research, 2001. 35(2): p. 373-378.
9. Kumar, K.S., et al., Microalgae–A promising tool for heavy metal remediation. Ecotoxicology and environmental safety, 2015. 113: p. 329-352.
10. Jaafari, J. and K. Yaghmaeian, Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere, 2019. 217: p. 447-455.
11. Singh, P., et al., Biological synthesis of nanoparticles from plants and microorganisms. Trends in biotechnology, 2016. 34(7): p. 588-599.
12. Gunjan, B. and M. Zaidi, Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. Journal of Plant Biochemistry & Physiology, 2014. 2(3).
13. Shankar, P.D., et al., A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 2016. 95: p. 28-44.
14. Priyadarshani, I. and B. Rath, Commercial and industrial applications of micro algae–A review. Journal of Algal Biomass Utilization, 2012. 3(4): p. 89-100.
15. Vanthoor-Koopmans, M., et al., Biorefinery of microalgae for food and fuel. Bioresource technology, 2013. 135: p. 142-149.
16. Arad, S.M. and A. Yaron, Natural pigments from red microalgae for use in foods and cosmetics. Trends in Food Science & Technology, 1992. 3: p. 92-97.
17. Chu, W.-L., Biotechnological applications of microalgae. International e-Journal of Science, Medicine & Education, 2012. 6(1): p. S24-S37.
18. Luangpipat, T., et al., Gold nanoparticles produced in a microalga. Journal of Nanoparticle Research, 2011. 13(12): p. 6439-6445.
19. Leong, Y.K. and J.-S. Chang, Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource technology, 2020. 303: p. 122886.
20. Zeraatkar, A.K., et al., Potential use of algae for heavy metal bioremediation, a critical review. Journal of environmental management, 2016. 181: p. 817-831.
21. Monteiro, C.M., P.M. Castro, and F.X. Malcata, Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnology progress, 2012. 28(2): p. 299-311.
22. Al-Qunaibit, M.H., A kinetic study of uptake of some cationic entities by the alga Chlorella vulgaris. Chemindix, 2004. 6: p. 1-12.
23. Monteiro, C.M., P.M. Castro, and F.X. Malcata, Microalga-mediated bioremediation of heavy metal–contaminated surface waters, in Biomanagement of metal-contaminated soils. 2011, Springer. p. 365-385.
24. Gardea-Torresdey, J.L., et al., Effect of chemical modification of algal carboxyl groups on metal ion binding. Environmental Science & Technology, 1990. 24(9): p. 1372-1378.
25. Baldrian, P. and J. Gabriel, Adsorption of Heavy Metals to Microbial Biomass, in The utilization of bioremediation to reduce soil contamination: problems and solutions. 2003, Springer. p. 115-125.
26. Zhi, T., et al., Advances on heavy metals removal from aqueous solution by algae. Progress in Chemistry, 2011. 23(8): p. 1782.
27. Cameron, H., M.T. Mata, and C. Riquelme, The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation. PeerJ, 2018. 6: p. e5295.
28. Alam, M.A., et al., Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. Journal of hazardous materials, 2015. 289: p. 38-45.
29. Al-Homaidan, A.A., et al., Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences, 2015. 22(6): p. 795-800.
30. Barros, A.I., et al., Harvesting techniques applied to microalgae: a review. Renewable and sustainable energy reviews, 2015. 41: p. 1489-1500.
31. Koopman, B. and E. Lincoln, Autoflotation harvesting of algae from high-rate pond effluents. Agricultural Wastes, 1983. 5(4): p. 231-246.
32. Golueke, C.G. and W.J. Oswald, Harvesting and processing sewage-grown planktonic algae. Journal (Water Pollution Control Federation), 1965: p. 471-498.
33. Vandamme, D., et al., Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresource technology, 2012. 105: p. 114-119.
34. Show, K.-Y. and D.-J. Lee, Algal biomass harvesting, in Biofuels from algae. 2014, Elsevier. p. 85-110.
35. Grima, E.M., et al., Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology advances, 2003. 20(7-8): p. 491-515.
36. Rossignol, N., et al., Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering, 1999. 20(3): p. 191-208.
37. Griffiths, M.J., et al., Advantages and challenges of microalgae as a source of oil for biodiesel. Biodiesel-feedstocks and processing technologies, 2011: p. 177-200.
38. Greenwell, H.C., et al., Placing microalgae on the biofuels priority list: a review of the technological challenges. Journal of the royal society interface, 2010. 7(46): p. 703-726.
39. Abd Rahman, N., F. Ibrahim, and B. Yafouz, Dielectrophoresis for biomedical sciences applications: A review. Sensors, 2017. 17(3): p. 449.
40. Hermanson, K.D., et al., Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 2001. 294(5544): p. 1082-1086.
41. Gierhart, B.C., et al., Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir, 2007. 23(24): p. 12450-12456.
42. Siebman, C., O.D. Velev, and V.I. Slaveykova, Two-dimensional algal collection and assembly by combining AC-dielectrophoresis with fluorescence detection for contaminant-induced oxidative stress sensing. Biosensors, 2015. 5(2): p. 319-336.
43. Chan, J.Y., et al., Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics, 2018. 12(1): p. 011503.
44. 林育生、王翔郁, 利用介電性質在微流體系統中操控與檢測細胞的研究. 2019(化工): p. 3-18.
45. Hughes, M.P., Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems. Electrophoresis, 2002. 23(16): p. 2569-2582.
46. Morgan, H., M.P. Hughes, and N.G. Green, Separation of submicron bioparticles by dielectrophoresis. Biophysical journal, 1999. 77(1): p. 516-525.
47. Khoshmanesh, K., et al., On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluidics and nanofluidics, 2012. 12(1-4): p. 597-606.
48. Deng, Y.-L., J.-S. Chang, and Y.-J. Juang, Separation of microalgae with different lipid contents by dielectrophoresis. Bioresource technology, 2013. 135: p. 137-141.
49. Deng, Y.-L., M.-Y. Kuo, and Y.-J. Juang, Development of flow through dielectrophoresis microfluidic chips for biofuel production: Sorting and detection of microalgae with different lipid contents. Biomicrofluidics, 2014. 8(6): p. 064120.
50. Hadady, H., et al., Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis. AIMS Biophys, 2016. 3(3): p. 398-414.
51. Michael, K.A., S.R. Hiibel, and E.J. Geiger, Dependence of the dielectrophoretic upper crossover frequency on the lipid content of microalgal cells. Algal Research, 2014. 6: p. 17-21.
52. Hadady, H., et al., High frequency dielectrophoretic response of microalgae over time. Electrophoresis, 2014. 35(24): p. 3533-3540.
53. Irimajiri, A., T. Hanai, and A. Inouye, A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell. Journal of theoretical biology, 1979. 78(2): p. 251-269.
54. Lin, Y.-S., et al., Dielectric Characterisation of Single Microalgae Cell Using Electrorotation Measurements. Multidisciplinary Digital Publishing Institute Proceedings, 2017. 1(4): p. 543.
55. Chiu, S.-Y., et al., Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology, 2008. 99(9): p. 3389-3396.
56. Cruz, Y.R., et al., Cultivation systems of microalgae for the production of biofuels. Biofuels-State of Development, 2018: p. 199-218.
57. Xia, X., J. Zhang, and T. Sawall, A simple colorimetric method for the quantification of Au (III) ions and its use in quantifying Au nanoparticles. Analytical Methods, 2015. 7(9): p. 3671-3675.
58. Trainito, C.I., O. Français, and B. Le Pioufle, Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments. Electrophoresis, 2015. 36(9-10): p. 1115-1122.
59. Müller, T., T. Schnelle, and G. Fuhr, Dielectric single cell spectra in snow algae. Polar Biology, 1998. 20(5): p. 303-310.
60. Johnson, J.M. and V. Rahmat-Samii, Genetic algorithms in engineering electromagnetics. IEEE Antennas and propagation Magazine, 1997. 39(4): p. 7-21.
61. Wu, Y., et al., Electrokinetic system to determine differences of electrorotation and traveling-wave electrophoresis between autotrophic and heterotrophic algal cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005. 262(1-3): p. 57-64.
62. Uvarov, N., Estimation of composites conductivity using a general mixing rule. Solid state ionics, 2000. 136: p. 1267-1272.
63. Zhao, S., et al., Experimental and theoretical study on dissolution of a single mixed gas bubble in a microalgae suspension. RSC Advances, 2015. 5(41): p. 32615-32625.
64. Thiansathit, W., et al., The kinetics of Scenedesmus obliquus microalgae growth utilizing carbon dioxide gas from biogas. Biomass and bioenergy, 2015. 76: p. 79-85.
65. Gupta, V. and A. Rastogi, Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Journal of hazardous materials, 2008. 152(1): p. 407-414.
66. Duygu, D.Y., et al., Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology, 2012. 11(16): p. 3817-3824.
67. Jabs, A. Determination of Secondary Structure in Proteins by Fourier Transform Infrared Spectroscopy (FTIR) 2005; Available from: http://jenalib.leibniz-fli.de/ImgLibDoc/ftir/IMAGE_FTIR.html.
68. Senapati, S., et al., Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters, 2012. 79: p. 116-118.
69. Annamalai, J. and T. Nallamuthu, Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Applied Nanoscience, 2015. 5(5): p. 603-607.
70. Ajdari, N., et al., Gold nanoparticle interactions in human blood: a model evaluation. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(4): p. 1531-1542.
71. Lin, Y.S., Investigation of the dielectric properties of micro-algae using microsystem technology. 2021, université Paris-Saclay.
72. Liang, W., et al., Determination of cell membrane capacitance and conductance via optically induced electrokinetics. Biophysical journal, 2017. 113(7): p. 1531-1539.