簡易檢索 / 詳目顯示

研究生: 吳光磊
Wu, Kuang-Lei
論文名稱: 近光學作用腔處理矽晶片之研究與應用
Investigation of Processing Silicon Wafer in Quasi-Optical Applicator and Application
指導教授: 朱國瑞
Chu, Kwo-Ray
口試委員: 朱國瑞
Chu, Kwo-Ray
陳仕宏
陳寬任
劉偉強
寇崇善
張存續
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 微波加熱近光學共振腔材料處理快速加熱矽晶片HFSS電腦模擬負熱膨脹性玻璃陶瓷
外文關鍵詞: Microwave Heating, Quasi-Optical Cavity, Materials Processing, Rapid Heating, Silicon Wafer, HFSS Simulation, Negative Thermal Expansion, Glass-Ceramics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • There are a lot of advantages in microwave heating including energy saving, rapid and selective heating, less pollution, etc. Because of these advantages, microwave heating gradually become a new technique to provide alternative approaches for materials processing. Presently most of applicators for microwave processing of materials are enclosed chambers which have some limitation. To eliminate these limitations, quasi-optical (QO) applicator was designed and applied.
    Heat treatment of silicon wafers is an important process in the fabrications of MEMS (micro-electro-mechanical-system), solar cells and so on. Otherwise silicon has the strong absorption of microwave energy and low price. Thus silicon wafers are proper to be substrates loaded with materials which have week absorption of microwave. In this thesis, the temperature dependences in silicon and QO applicator were investigated qualitatively during the heating process, including the conductivity, absorbed power of silicon wafers and the variations of the field in QO resonator.
    Finally as a trial application, negative thermal expansion glass-ceramics was sintered in QO applicator and it was confirmed that the processed negative thermal expansion glass-ceramics has the required crystalline phase of β-spodumene through the XRD (X-ray diffraction) pattern.


    Acknowledgement Abstract 1. Introduction 1.1 Development of microwave heating 1.2 Advantages of microwave heating 1.3 Motive of designing quasi-optical applicator 2. Introductions of Quasi-optical applicator 2.1 Quasi-optical resonator 2.2 Alternative applications of QO applicator 2.3 Analytic solutions of field in QO resonator 2.4 Field patterns in QO resonator 3. Materials and their interaction with microwave 3.1 Mechanisms of microwave heating 3.2 Negative thermal expansion glass-ceramics 3.3 Microwave sintering of glass-ceramics 4. Experiment setup 5. Result 5.1 Phenomena of heating silicon wafers in QO applicator 5.2 Temperature effects of a silicon wafer on the quality factor 5.3 Analysis of power losses in QO applicator 5.4 Application in negative thermal expansion glass-ceramic 6. Conclusion Appendix Reference

    [1] J. M. Osepchuk, IEEE Trans. Microwave Tech., Vol. MTT-32, No. 9, p. 1200, 1984.

    [2] Committee on microwave processing of materials, Microwave Processing of Materials, National Academy Press, 1994.

    [3] E. D. Neas, M. J. Collins, Microwave Heating-Theoretical Concepts and Equipment Design, American Chemical Society, 1988.

    [4] D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, N. J. Miles, Microwave Heating Application in Environmental Engineering - a Review, Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 75-90, 2002.

    [5] K. R. Chu, L. R. Barnett, T. H. Chang, H. Y. Chang, W. Y. Chiang, L. C. Tai, C. F. Yu, A New Microwave Applicator for Materials Processing, Industrial materials Magazine, Vol. 216, pp. 77-80, 2004.

    [6] G. Link, L. Feher, M. Thumm, H. J. Ritzhaupt-Kleissl, R. Bohme, A. Weisenburger, Sintering of Advanced Ceramics Using A 30-GHz, 10-kW, CW Industrial Gyrotron, IEEE Trans. Plasma Sci., Vol. 27, No. 2, pp. 547-554, 1999.

    [7] R.F. Service, Electronic Textiles Charge Ahead, Science, Vol. 301, pp. 909-911, 2003.

    [8] A. Copty, F. Sakran, M. Golosovsky, D. Davidov, Low-Power Near Field Microwave Applicator for Localized Heating of Soft Matter, Appl. Phys. Lett., Vol. 84, No. 25, pp. 5109-5111, 1999.

    [9] A. E. Siegman, Lasers, University Science Books, Chapters 14-17, 1986.

    [10] T. Matsui, K. Araki, M. Kiyokawa, Gaussion-Beam Open Resonator with Highly Reflective Circular Coupling Regions, IEEE Trans. Microwave Theory Tech., Vol. 41, No. 10, pp. 1710-1714, 1993.

    [11] F. I. Shimabukuro, S. Lazar, M. Chernick, H. B. Dyson, A Quasi-Optical Method for Measuring the Complex Permittivity of Materials, IEEE Trans. Microwave Theory Tech. Vol. MTT-32, No. 7, pp. 659-665, 1984.

    [12] T. Keith, B. G. Yogesh, B. John, F. C. Reid, Direct Silicon-Silicon Bonding by Electromagnetic Induction Heating, J. MEMS, Vol. 11, No. 4, pp.285-292, 2002.

    [13] J. T. Verdeyen, Laser Electronics 3rd edition, Pearson, Chapters 3-6, 1989.

    [14] K. R. Chu, Context for Electrodynamics (I), Chapter 7.

    [15] P.W. McMillan, Glass-Ceramic, 2nd edition (Non-Metallic Solids: Vol. 1), Academic Press Inc, 1979.

    [16] W. Hölland, G. Beal, Glass-Ceramic Technology, American Ceramic Society, pp. 403-445, 2002.

    [17] Z. Strnad, Glass-Ceramic Materials, Glass Sci. Tech., Vol. 8, p. 190, 1986.

    [18] W. Pannhorst, Glass-ceramics: State-of-the-Art, J. Non-Cryst. Solids, Vol. 219, No. 1, pp. 198-204, 1997.

    [19] J. S. O. Evans, Negative thermal expansion materials, J. Chem. Soc., Dalton Trans., pp. 3317-3326, 1999.

    [20] J. N. Grima, V. Zammit, R. Gatt, Negative Thermal Expansion, Xjenza 11, pp. 17-29, 2006.

    [21] R. D. Rawlings, J. P. Wu, A. R. Boccaccini, Glass-Ceramics: Their Production from Wastes. A Review, J. Mater. Sci., Vol. 41, pp. 733-761, 2006.

    [22] D. Arindam, I. Ahmad, E. D. Whitney, D. E. Clark, Effect of Green Microstructure and Processing Variables on the Microwave Sintering of Alumina, Mater. Res. Soc., Vol. 189, pp. 283-288, 1991.

    [23] S. Das, A. K. Mukhopadhyay, S. Datta, D. Basu, Prospects of Microwave Processing: An Overview, Bull. Mater. Sci., Vol. 32, No. 1, pp. 1-13, 2009.

    [24] M. A. Janney, H. D. Kimrey, Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics, Mater. Res. Soc., Vol. 189, pp. 215-227, 1991.

    [25] M. Willert-Porada, A Microstructural Approach to the Origin of Microwave Effects in Sintering of Ceramics and Composites, Microwaves: Theory and Application in Materials Processing IV, pp. 153-163, 1997.

    [26] F. J. Morin, J. P. Maita, Phys. Rev., Vol. 94, p. 1525, 1954.

    [27] W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, D. L. McElroy, Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300 K, Phys. Rev., Vol. 167, pp. 765-782, 1968.

    [28] Y. A. Cengel, Heat and Mass Transfer: A Practical Approach 3rd edition (SI Units), McGraw-Hill, p. 285, 2007.

    [29] S. C. Jain, S. K. Agarwal, W. N. Borle, S. Tata, Total Emissivity of Silicon at High Temperatures, J. Phys. D: Appl. Phys., Vol. 4, pp. 1207-1209, 1971.

    [30] http://www.ioffe.ru/SVA/NSM/Semicond/Si/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE