研究生: |
陳威凱 Chen, Wei-Kai |
---|---|
論文名稱: |
光學多層膜耐高溫特性與薄膜邊長關係之研究 Study of high temperature durability and thin film area relationship for multilayer optical thin film |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 耐高溫 、光學薄膜 、熱應力 、通道 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要研究方向為耐高溫薄膜的製程及測試,此實驗乃是根據專利發明人趙煦教授、黃承揚以及顧浩民,所提出之專利”一種可用於太陽電池之耐高溫光學薄膜”[1],其專利內容為一具有耐高溫之光學薄膜的方法及製程,將此專利製程之構想引入本文,本論文採用離子束濺鍍系統製作出多層光學薄膜,再以感應耦合電漿蝕刻系統,蝕刻出所謂熱應力釋放通道,透過高溫加熱爐模擬高溫環境,測試不同薄膜邊長之光學薄膜,所能夠承受的高溫,不會因為熱應力造成薄膜變形剝落的問題。根據實驗結果了解到,光學薄膜的邊長大小 與耐熱溫度有其反比關係,也就是當薄膜的邊長越大,能夠承受的溫度也就越低,當環境溫度造成之熱應力,超過了光學薄膜所能承受的應力範圍,光學薄膜就會產生變形剝落。而本論文最後目標為根據上述之實驗結果,實際應用於藍光二極體,因為在氮化鎵之橫向磊晶製程時,其製作緩衝層需要經過1150oC的高溫,因此將所做出能夠耐1150oC之藍光高反射鏡,實際應用於藍光LED提升其發光效率。
參考文獻
[1] 趙煦、黃承揚、顧浩民,國立清華大學研究成果申請專利提案書,一種可用於太陽電池之耐高溫光學薄膜, 2009
[2] Kikuta , Hisao; Hino, Shunsuke; Maruyama, Akira; Mizutani, Akio,”Estimation method for the light extraction efficiency of light-emitting elements with a rigorous grating diffraction theory” ,Journal of the Optical Society of America A, vol. 23, Issue 5, P.1207-1213, 2006.
[3] Danae¨ Delbeke, Peter Bienstman, Ronny Bockstaele, and Roel Baets , “Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode “, Vol.19, Issue. 5, May 2002, P.871–880, J. Opt. Soc. Am. A.
[4] Shuji Nakamura, ” In Situ Monitoring of GaN Growth Using Interference Effects”, Jpn. J. Appl. Phys. 30, P.1620 ,1991.
[5] S. Tomiya, K. Funato, and T. Asatsuma. , ” Dependence of crystallographic tilt and defect distribution on mask material in epitaxial lateral overgrown GaN layers ”, Applied Physics Letters ,77, P.636 ,2000.
[6] P. Fini, H. Marchand, J.P. Ibbetson, “Determination of tilt in the lateral epitaxial overgrowth of GaN using X-ray diffraction”, Journal of Crystal Growth, Volume 209, Issue 4, 2 February 2000, P. 581-590.
[7] Kazumasa Hiramatsu , “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,“ Journal of physics: Condensed Matter, Volume 13, Number 32,13 August 2001, P.6961- 6975.
[8]莊達人, ”VLSI製造技術” , 高立圖書有限公司,1999第4版。
[9] Chen-Yang Huang, Hao-Min Ku, Wei-Tsai Liao, Chu-Li Chao, Jenq-Dar Tsay, and Shiuh Chao ”Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride” , 30 March 2009, Vol. 17, No. 7 ,OPTICS EXPRESS, P5624.
[10] Linzhi WuT, Hongyan Wang, “Thermoelastic solutions for multilayered electronic assemblies”, Thin Solid Films, 510, 2006, P.203–212.
[11] M. Ohring, The Materials Science of Thin Films, Academic Press, New York, 1992.
[12] HAIDER J , RAHMAN M , CORCORAN B , “Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis”, Journal of Materials Processing Technology, 2005, 168: 36241.
[13] G.G. Stoney, “The tension of metallic films deposited by electrolysis”, Proc. Roy. London, Ser. A 82 , 1909, P.172-175.
[14] R Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films”, J. Phys.: Candens. Matter 6, 1994, P.9519-9550.
[15] C.H. Hsueh*, ”Thermal stresses in elastic multilayer systems”, 2002 Elsevier Science B.V. All rights reserved, P.182–188.
[16] Mamoru Takahashi, Yotsugi Shibuya, “Thermoelastic analysis of interfacial stress and stress singularity between a thin film and its substrate”, Journal of Thermal Stresses, 26: P.963–976, 2003.
[17] M. Takahashi and Y. Shibuya, “Numerical analysis of interfacial stress and stress singularity between thin films and substrates”, Mechanics Research Communications, vol. 24, No. 6, pp. 597-602, 1997.