研究生: |
林中偉 Lin, Chung-Wei |
---|---|
論文名稱: |
創新自適應演算法應用於磁性編碼器訊號修正及精度提升 A new adaptive algorithm for signal error correction and accuracy enhancement of magnetic encoder |
指導教授: |
宋震國
Sung, Cheng-Kuo |
口試委員: |
張禎元
Chang, Jen-Yuan 徐志豪 Xu, Zhi-Hao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 磁性編碼器 、自適應演算法 、訊號修正 |
外文關鍵詞: | Magnetic encoder, Adaptive algorithm, Signal correction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
增量式磁性編碼器類比訊號為正弦與餘弦訊號,其誤差包含直流偏移、振幅不等、相位偏移、諧波誤差。現今對於前三種誤差已有許多處理方式,但大多數方法僅針對固定量值進行修正。在訊號誤差隨使用情況而改變的情境下,需要一套能夠即時修正訊號的方法。除這三種誤差之外,磁性編碼器訊號中常有諧波的成份出現,此特徵主要來自於磁性尺提供的磁場與異向性磁阻感測器的形狀異向性。
本研究提出新的自適應演算法對前三項誤差進行即時的量值估計與消除。此方法在演算法中加入虛擬的量測數據,以避免系統在停止運動時出現估計錯誤的現象。對於訊號中諧波成份,選用訊號交錯時的量值以估計誤差,在特定範圍內使用同樣的數值進行修正。藉本文所提之訊號修正方案,編碼器位置諧波誤差平均振幅可降低至0.5 μm以下。
The incremental magnetic encoder outputs quadrature signals with error components, these errors include DC offset, unequal gain, phase shift, and harmonic error. Nowadays, there are many ways to correct the first three types of errors by assuming that each error is constant. However, the signal errors vary with the environmental change. Hence, an algorithm that can track the signal errors in real-time is required. Besides the first three errors, the signals contain the harmonic error, which results from the harmonic magnetic field and the shape anisotropic of the anisotropic magnetoresistance (AMR) sensor.
This study proposes a new adaptive algorithm to estimate and then eliminate the magnitude of the first three errors. Virtual points are added to measurement data to prevent estimation errors when the motion of the system stops. The harmonic error is estimated with the magnitudes of the signals at crossingpoints, and is corrected with the same value at a certain range. With the proposed correction method, the average magnitude of harmonic component of position error reduces to below 0.5 μm.
[1] 經濟部工業局,智慧機械產業2021-2023專業人才需求推估調查,2020。
[2] K. Miyashita, T. Takahashi, and M. Yamanaka, “Features of a magnetic rotary encoder,” IEEE Trans. Magn., Vol. 23, No. 5, pp. 2182-2184, Sept. 1987.
[3] RLS, Retrieved from: https://www.rls.si/
[4] RENISHAW, Retrieved from: https://www.renishaw.com/
[5] HEIDENHAIN, Retrieved from: https://www.heidenhain.com/
[6] Electronica Mechatronic Systems, Retrieved from: http://www.electronicaems.com/
[7] ELTRA, Retrieved from: https://eltra-encoder.eu/
[8] P. L. M. Heydemann, “Determination and Correction of Quadrature Fringe Measurement Errors in Interferometers,” Applied Optics, Vol.20, No. 19, pp. 3382-3384, Oct. 1981.
[9] K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precision Eng., Vol. 12, No. 4, pp. 195-198, Oct. 1990.
[10] S. Balemi, “Automatic calibration of sinusoidal encoder signals,” IFAC Proceedings Volumes, Vol. 38, No. 1, pp. 68-73, Jul. 2005.
[11] M. Benammar, L. B. Brahim, and M. A. Alhamadi, “A High Precision Resolver-to-DC Converter,” IEEE Trans. on Instrum. Meas., Vol. 54, No. 6, pp. 2289-2296, Dec. 2005.
[12] R. Hoseinnezhad, A. Bab-Hadiashar, and P. Harding, “Calibration of Resolver Sensors in Electromechanical Braking Systems: A Modified Recursive Weighted Least Squares Approach,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 1052-1060, Apr. 2007.
[13] E. Ulu, N. G. Ulu, and M. Cakmakci, “Adaptive correction and look-up table based interpolation of quadrature encoder signals,” 5th. Annual Conf. of ASME with 11th. Conf. of JSME, Vol. 2, pp. 543-552, Oct. 2012.
[14] 陳佳妤,磁性量測系統之磁化與精度分析,國立清華大學動力機械工程學系碩士論文,2015。
[15] 張哲綱,多極次充磁頭用於製作高解析度與高精度磁性尺之可行性研究,國立清華大學動力機械工程學系碩士論文,2020。
[16] 吳惇哲,磁性編碼器諧波雜訊之分析與排除,國立清華大學動力機械工程學系碩士論文,2021。
[17] N. C. Cheung, “An innovative method to increase the resolution of optical encoders in motion servo systems,” IEEE Int. Conf. on PEDS, pp. 797-802, Jul. 1999.
[18] T. Emura, L. Wang, and A. Arakawa, “A High-Resolution Interpolator for Incremental Encoders by Tow-Phase Type PLL Method,” Proc. of IECON ‘93 - 19th Annual Conf. of IEEE Ind. Electron., pp. 1540-1545, Nov. 1993.
[19] T. Emura and L. Wang, “A High-Resolution Interpolator for Incremental Encoders Based on the Quadrature PLL Method,” IEEE Trans. Ind. Electron., Vol. 47, No. 1, pp. 84-90, Feb. 2000.
[20] K. K. Tan, H. X. Zhou, and T. H. Lee, “New Interpolation Method for Quadrature Encoder Signals,” IEEE Trans. on Instrum. Meas., Vol. 51, No. 5, pp. 1073-1079, Oct. 2002.
[21] H. T. Le, H. V. Hoang, and J. W. Jeon, “Efficient Method for Correction and Interpolation Signal of Magnetic Encoders,” IEEE Int. Conf. on INDIN, pp. 1383-1388, Jul. 2008.
[22] H. V. Hoang and J. W. Jeon, “An Efficient Approach to Correct the Signals and Generate High-Resolution Quadrature Pulses for Magnetic Encoders,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3634-3646, Aug. 2011.
[23] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers,” Proc. of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, FPGA ‘98, pp. 191-200, Mar. 1998.
[24] S. N. Mokhtar, M. I. Ayub, N. Ismall, and N. G. N. Daud, “Implementation of trigonometric function using CORDIC algorithms,” AIP Conf. Proc., Vol. 1930, No. 1, Feb. 2018.
[25] D. K. Cheng, “Field and Wave Electromagnetics,” 2nd ed., 1983.
[26] E. H. Hall, “On a New Action of the Magnet on Electric Currents,” Am. J. Math., Vol. 2, No. 3, pp. 287-292, Sept. 1879.
[27] Melexis, Retrieved from: https://www.melexis.com/
[28] W. Thomson, “On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and iron,” Proc. Roy. Soc., Vol. 8, pp. 546-550, 1857.
[29] T. McGuire and R. Potter, “Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys,” IEEE Trans. Magn., Vol. 11, No. 4, pp. 1018-1038, Jul. 1975.
[30] Sensitec, Retrieved from: https://www.sensitec.com/
[31] 高清芬,光柵位移干涉術,國立交通大學光電工程研究所博士論文,2005年。
[32] iC-Haus, Retrieved from: https://www.ichaus.de/
[33] S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient Approximations for the Arctangent Function,” IEEE Signal Processing Mag., pp. 108-111, May 2006.
[34] A. D. Poularikas and Z. M. Ramadan, “Adaptive filtering primer with MATLAB,” 1st ed., 2006.
[35] M. H. Hayes, “Statistical Digital Signal Processing and Modeling,” 1st ed., 1996.
[36] S. Haykin, “Adaptive Filter Theory,” 3rd ed., 2002.
[37] A. H. Sayed, “Adaptive Filters,” 1st ed., 2008.
[38] HIWIN, Retrieved from: https://www.hiwin.tw/
[39] National Instruments, Retrieved from: https://www.ni.com/
[40] G. Cardano, “Ars Magna,” 1545.