研究生: |
洪嘉駿 Hung, Chia-Chun |
---|---|
論文名稱: |
奈米粒子在簡單奈米電漿光晶格中的運輸現象 Characterization of transport behavior of nano particle in a simple nanoscale plasmonic optical lattice |
指導教授: | 楊雅棠 |
口試委員: |
楊雅棠
黃哲勳 陳致真 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 電漿子 、光晶格 、光學鑷子 、布朗運動 、光學分餾 、表面電漿 |
外文關鍵詞: | plasmonics, optical lattice, optical tweezer, Brownian Motion, optical fractionation, surface plasmon |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在固態物理學中,一個週期性的晶格是以晶胞為單位,組成不同種類的布拉維晶格,我們亦可分配晶胞的排列和布拉格晶格來組成給定的金屬週期結構。本論文中,我們展示了500nm粒子在電漿子增強的二維方形光晶格中,改變極化方向時的運輸特性,其光晶格位勢便是將高斯雷射光束打入週期性的金奈米圓盤陣列來激發雷射共振。
實驗上,500nm的螢光小球被滴至於樣品中,並使用螢光成像的CCD相機記錄其運動行為,最後使用Matlab程式匯出影像的軌跡。我們蒐集了約180條在不同入射光強度的粒子軌跡來做分析,粒子軌跡可以在合適的粒子大小,位勢深度及週期式位勢配合的情況下機率性的鎖定在特定的通道內,其中,最突出的通道方向為[01]、[10]、[11]。
In solid state physics, a periodic crystal consists of a Bravais lattice and a unit cell. We can assign a Bravais lattice and a unit cell for a given metallic periodic nanostructures.We report the characterization of transport of 500 nm nanospheres in a plasmon-enhanced, polarization controlled two-dimensional square lattice. The optical potential is created by illuminating an array of gold nanodisks with a Gaussian beam to excite plasmon resonance.
To characterize the particle trajectory in a quantitative way, we have collected more than ~180 trajectories at different incident light intensity. Fluorescently labeled nanospheres of 500 nm is dispensed on the sample and the motion is recorded by fluorescent imaging with the CCD camera. A custom Matlab program is then used to adjust the threshold of the image and extract the particle trajectory data. We observe weak kinetic locked in with most prominent "channeling" direction along directions of [01],[11],and [10].
1. Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290.
2. Grier, D. A revolution in optical manipulation. Nature 2003, 424, 810–816.
3. Tatarkova, S. A.; Sibbett, W.; Dholakia, K. Brownian particle in an optical potential of the washboard type. Phys. Rev. Lett. 2003, 91, 038101.
4. Korda, P. T.; Taylor, M. B.; Grier, D. G. Kinetically locked-in colloidal transport in an array of optical tweezers. Phys. Rev. Lett. 2002, 89, 128301.
5. Ladavac, K.; Kasza, K.; Grier, D. G. Sorting mesoscopic objects with periodic potential landscapes: optical fractionation. Phys. Rev. E. 2004, 70, 010901.
6. MacDonald, G. C.; Spalding, G. C.; Dholakia, K. Microfluidic sorting in an optical lattice. Nature 2003, 426, 421-424.
7. Juan, M. L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Plasmon nano optical tweezer. Nature Photon. 2009, 5, 915−919.
8. Volpe, G.; Quidant, R.; Badenes, G.; Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 2006, 96, 238101.
9. Righini, M.; Zelenina, A. S.; Girard, C.; Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 2007, 3, 477–480.
10. Righini, M.,; Volpe, G.; Girard, C.; Petrov, D.; Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 2008, 100, 183604.
11. Pang, Y.; Gordon, R. Optical trapping of single protein. Nano Lett. 2012, 12, 402−406.
12. Chen, K. Y.; Lee, A. T.; Hung, C. C.; Huang, J. S.; Yang, Y. T. Transport and trapping in two-dimensional nanoscale plasmonic optical lattice. 2013, 13, 4118-4122.
13. Cuche, A.; Stein, B.; Canguier-Durand, A.; Devaux, E.; Genet, C.; Ebbesen, T. W. Brownian motion in a designer force field: dynamical effects of negative refraction on nanoparticles. Nano Lett., 2012, 12, 4329-4332.
14. Ashcroft, N. W.; Mermin, N. D. Solid State Physics, Orlando: Saunder College Publishing, 1976.
15. W. H. Wright, G. J. Sonek and M. W. Berns. Radiation trapping forces on microspheres with optical tweezers. Appl. Phys. Lett. 63, 715 (1993)
16. R W Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. 1902 Proc. Phys. Soc. London 18 269
17. Fano,U. The Theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, Vol. 31, Issue 3, pp. 213-222 (1941)
18. Mark I. Stockman. Spaser Action, Loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett. 106, 156802, 2011.
19. Lukas Novotny, Randy X. Bian, and X. Sunney Xie. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645
20. M Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo and R. Quidant, “Nano-optical trapping of rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett., Vol. 9, pp. 3387-3391, 2009.
21. Jaquay, E.; Martínez, L. J.; Huang, N.; Mejia, C. A.; Sarkar, D.; Povinelli, M. L. Light-assisted, template self-assembly of gold nano particle chain. Nano Lett. 2014, xxx, xxxxx.
22. Gopinathan, A.; Grier, D. G. Statistically locked-in transport through periodic potential lanscapes. Phys. Rev. Lett. 2004, 92, 130602.
23. Pelton, M.; Ladavac, K.; Grier, D. G. Transport and fractionation in periodic potential energy landscapes. Phys. Rev. E., 2004, 70, 031108.
24. Thompson, J. D.; Tiecke, T. G.; de Leon, N. P.; Feist, J.; Akimov, A.V.; Gullans, M.; Zibov, A. S.; Vuletic, V.; Lukin, M. D. Coupling of a single trapped atom to a nanoscale optical cavity. Science, 2013, 6137, 1202-1205.
25. Chang, D. E.; et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 2009, 103, 123004.
26. Gullans, M.; Tiecke, T. G.; Chang, D. E.; Feist, J.; Thompson, J. D.; Cirac, J. I.; Zoller, P.; Lukin, M. D. Nanoplasmonic lattices for ultracold atoms. Phys. Rev. Lett. 2013, 109, 235309.