研究生: |
劉柏彣 Po-Wen Liu |
---|---|
論文名稱: |
構件在高頻諧和力作用下之數位光黏彈探討 Digital Photoviscoelastic Investigation of Structural Components under High Frequency Harmonic Force |
指導教授: |
王偉中
Wei-Chung Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 192 |
中文關鍵詞: | 超音波 、高頻諧和力 、黏彈 、光彈 、光黏彈 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工程應用上光彈法已經被廣泛應用於求取工程構件內部應力及應變,本研究主要是以數位光彈法為基礎,運用光彈法的非接觸性、全域性及即時性量測的特質,針對一矩形構件在高頻諧和力作用下隨時間及溫度變化的應力分佈及應力波做一完整的研究。
由於光彈法是只適用於彈性理論及彈性範圍內,如果加入時間和溫度的效應勢必會有黏彈的效應發生,因此希望能利用拉伸試驗將拉伸機取得之實驗數據和光彈儀同步取得之實驗影像,藉由交叉比對的方式發展出一套數位光黏彈實驗及量測系統,再運用數位光黏彈系統分析矩形構件在高頻諧和力作用下隨時間及溫度變化的應力分佈及應力波。
[1] E. H. Dill and C. Fowlkes, “Photoviscoelasticity”, NASA CR-444, 1966.
[2] 王宏洲, “含拘束阻尼層圓板的振動與動態穩定性”, 國立成功大學博士論文, 2003.
[3] S. C. Hunter, “The Rolling Contact of a Rigid Cylinder with a Viscoelastic Half Space,” J. Appl. Mech., Vol. 28, No. 4, pp. 611-617, 1961.
[4] L. W. Morland, “Exact Solutions for Rolling Contact between Viscoelastic Cylinders,” Q. J. Mech. Appl. Math., Vol. 20, Part 1, pp. 73-106, 1967.
[5] C. Panek and J. J. Kalker, “Three-dimensional Contact of a Rigid Roller Traversing a Viscoelastic Half Space,” J. Appl. Math., Vol. 26, pp. 299-313, 1980.
[6] I. G. Goriacheva, “Contact Problem of Rolling of a Viscoelastic Cylinder on a Base of the Same Material,” PMM, Vol. 37, No. 5, pp. 925-933, 1973.
[7] C. Papat and R. C., Batra, “Identification of a Viscoelastic Rubber Covered Roll by a Rigid Plane Surface,” Mechanics Research Communications, Vol. 9, pp. 265-278, 1982.
[8] J. T. Oden and T. L. Lin, “On the General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder,” Comput. Math. Appl. Mech. Engrg., Vol. 57, No. 3, pp. 297-367, 1986.
[9] H. Pih, “Photoelastic Studies of the Two-dimensional Dynamic Stress-Optic Law,” Experimental Mechanics, Vol. 3, pp. 33-40, 1963.
[10] A. B. J. Clark and R. J. Sanford, “A Comparison of Static and Dynamic Properties of Photoelastic Materials,” Experimental Mechanics, Vol. 3, pp. 148-151, 1963
[11] 胡德, “高分子物理與機械性質,” 渤海堂, 台北,1990.
[12] R. D. Mindlin, “A Mathematical Theory of Photoviscoelasticity,” J. Appl. Phys., Vol. 20, pp. 206-216, 1949.
[13] M. L. Williams and R. J. Arenz “The Engineering Analysis of Linear Photoviscoelastic Materials,” Experimental Mechanics, Vol. 4, No. 9, pp. 249-262, 1964.
[14] R.J. Arenz, C. W. Ferguson and Williams, M.L., “The Mechanical and Optical Characterization of a Solithane 113 Composition,” Experimental Mechanics, Vol. 7, No. 4, pp. 183-188, April 1967.
[15] S. Sugimori, Y. Miyano and T. Kunio, “Photoviscoelastic Analysis of Thermal Stress in a Quenched Epoxy Beam,” Experimental Mechanics, Vol. 24, No. 2, pp. 150-156, 1984.
[16] W. Holzapfel, S. Neuschaefer-Rube and M. Kobusch, “Height-Resolution, Very Broadband Force Measurements by Solid-State Laser Transducers,” Measurement, Vol. 28, pp. 277-291, 2000.
[17] J. T. Gomez, A. Shukla and A. Sharma, “Static and Dynamic Behavior of Concrete and Granite in Tension with Damage,” Theoretical and Applied Fracture Mechanics, Vol. 36, pp. 37-49, 2001.
[18] L. J. Pyrak-Nolte, S. Roy and B. L. Mullenbach, ”Interface Waves Propagated Along a Fracture,” J. of Applied Geophysics, Vol. 35, pp. 79-87, 1996.
[19] A. Zerwer, M. A. Polak and J. C. Santamarina, “Wave Propagation in Thin Plexiglas Plates: Implications for Rayleigh Waves,” NDT & International, Vol. 33, pp. 33-41, 2000.
[20] K.-H. Elmer, “Simulation of Three-Dimensional Waves for Crack Detection,” Advances in Engineering Software, Vol. 26, pp. 75-82, 1996.
[21] W. Tong, “Pressure-Shear Stress Wave Analysis In Plate Impact Experiments,” Int. J. Impact Engng., Vol. 19, pp. 147-167, 1997.
[22] D. Grady, “Scattering as a Mechanism for Structured Shock Waves in Metals,” J. Mech. Phys. Solids, Vol. 46, pp. 2017-2032, 1998.
[23] K. Liu and S. Tanimura, “Numerical Analysis for Dynamic Stress Concentration in a Rectangular Block Due to Impact,” International J. Impact Engng., Vol. 19, pp. 653-666, 1997.
[24] S. Itou, “Dynamic Stress Intensity Factors Around Two Parallel Cracks in an Infinite-Orthotropic Plane Subjected to Incident Harmonic Stress Waves,” Int. J. Solids Structures, Vol. 34, pp. 1145-1165, 1997.
[25] C. C. Ma and S. K. Chen, “Exact Transient Analysis of an Anti-Plane Semi-Infinite Crack Subjected to Dynamic Body Forces,” Wave Motion, Vol. 17, pp. 161-171, 1993.
[26] A. S. Eriksson, A. Bostrom and S. K. Datta, “Ultrasonic Wave Propagation through a Cracked Solid,” Wave Motion, Vol. 22, pp. 297-310, 1995.
[27] E. Scarpetta and M. A. Sumbatyan, “On Wave Propagation in Elastic Solids with a Doubly Periodic Array of Cracks,” Wave Motion, Vol. 25, pp. 61-72, 1997.
[28] Y. C. Angel and A. Bolshakov, “In-Plane Waves in an Elastic Solid Containing a Cracked Slab Region,” Wave Motion, Vol. 31, pp. 297-315, 2000.
[29] Amit Lal and R. M. White, “Silicon Microfabricated Horns for Power Ultrasonics,” Sensors and Actuators, A54, pp. 542-546, 1996.
[30] Nobuaki Omata, Takahiro Suga, Hirokazu Furusawa, Shinichi Urabe, Takeru Kondo and Qing-Qing Ni, “Viscoelasticity Evaluation of Rubber by Surface Reflection of Supersonic Wave,” Ultrasonics, Vol. 44, pp.e211-e215, 2006.
[31] A. Asundi and M. R. Sajan, “Digital Dynamic Photoelasticity,” Optics and Lasers in Engineering, Vol. 20, pp. 135-140, 1994.
[32] A. Asundi and M. R. Sajan, “Dynamic Photoelasticity Using a Laser Scanner,” Optics and Lasers Technology, Vol. 27, pp. 153-155, 1994.
[33] A. Asundi and M. R. Sajan, “Dynamic Photoelasticity by TDI Imaging,” Proceedings of the 2nd International Conference on Experimental Mechanics, pp. 141-149, Singapore, Nov.29 - Dec.1, 2000.
[34] Y. Miyano, M. Shimbo and T. Kunio, “Viscoelastic Analysis of Residual Stress in Quenched Thermosetting Resin Beams,” Experimental Mechanics, Vol. 22, No. 8, pp. 310-316, 1982
[35] R. M. Christensen, “Theory of Viscoelasticity: An Introduction,” Second Edition, Academic Press, 1982.
[36] 蔡英煌, “構件承受超音波極衝擊之動態應力分析,” 國立清華大學動力機械工程學系博士論文,2007.
[37] Measurements Group, Raleigh, North Carolina, USA.
[38] W. T. Coffey, Yu. P. Kalmykov and J. T. Waldron, “The Langevin Equation with Applications in Physics, Chemistry and Electrical Engineering,” World Scientific, London, UK, 1996
[39] Carlo Cercignani, “Theory and Application of the Boltzmann Equation,” Elsevier, New York, USA, 1975.