研究生: |
岳正恬 Yueh, Zheng-Tian |
---|---|
論文名稱: |
以介電濕潤裝置進行體外胚胎培養 In Vitro Embryo Culture by using EWOD Devices |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
徐文祥
Hsu, Wen-Syang 劉承賢 Liu, Cheng- Hsien 范士岡 Fan, Shih-Kang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 數位微流道 、介電濕潤 、胚胎培養 |
外文關鍵詞: | digital microfluidics, electrowetting on dieletric, embryo culture |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以介電濕潤晶片做為體外胚胎培養裝置,利用介電濕潤晶片可操控微液滴移動之功能,模仿體內動態流體環境,對胚胎進行動態培養,並改善培養環境,如培養液內濃度梯度、擴散等物理因素,以幫助胚胎分裂之發展。實驗以微機電技術製做出共平面式介電濕潤晶片,選用透光性良好之玻璃作為基板以方便觀察胚胎,晶片設計電極大小為1.5 mm × 0.75 mm,流道高度為260 μm,供應電壓為68.5VRMS且頻率於500Hz之電訊號。以小鼠胚胎作為培育對象在介電濕潤晶片上進行動態培養實驗,驅動1 μl培養液滴內含有單顆2-細胞期胚鼠卵,並包覆4 μl培養油於培養液滴與流道電極上,在96小時中每間隔一段時間後驅動一次液滴移動,其液滴平均移動速率為0.58 mm/s,另外在介電濕潤晶片上進行靜態培養做為對照組,並在胚齡2.5天、3.5天和4.5天時觀察記錄胚胎分裂情況。本實驗成功使用介電濕潤晶片做為培養裝置,在胚齡4.5時胚胎發育至囊胚期機率靜態可達到93%、動態可達到89%,由多次的實驗結果觀察出動態培養之胚胎分裂速度較快,胚胎發育至囊胚孵化期機率靜態為23%、動態為54%,其速度與靜態胚胎相比差約0.5天,證實使用介電濕潤晶片對胚胎進行動態培養可幫助胚胎分裂。
This study presents in vitro embryo culture devices based on Electrowetting on Dielectric (EWOD) devices, which can manipulate micro droplets in order to mimic dynamic fluidics in vivo environment. Physical effects, such as medium concentration gradient and medium diffusion, are improved by dynamic culture for enhancing embryo cleavage and development. A coplanar EWOD chip is fabricated by MEMS technique, the electrodes size are 1.5 mm × 0.75 mm and channel gap between two parallel plates is 260 μm. A 1 μl droplet is driven by EWOD force while applying 68.5VRMS at 500 Hz. A 2-cell-stage mouse embryo is cultured in 1 μl medium droplet covered with 4 μl culture oil in the incubator with 5% CO2 at 37℃. In dynamic culture experiments, an embryo is moved in the driven droplet many times at average velocity 0.58 mm/s during 96 hours. Embryos cleavage and development are recorded in E2.5, E3.5 and E4.5. This study successfully uses EWOD devices as in vitro embryo culture devices to mimic a dynamic environment. The results show that the development blastocyst rates of static and dynamic is 93% and 89%. The cleavage rates of dynamic culture are faster than that of static culture, embryo cleavage to hatching stage rates of static and dynamic is 23% and 54%. Hence, the dynamic culture in EWOD devices enhancing embryo cleavage and development is demonstrated in this study.
[1] M. A. Ben Abdelwahed, Y. Wielhorski, L. Bizet, and J. Bréard, "Characterisation of bubbles formed in a cylindrical T-shaped junction device," Chemical Engineering Science, vol. 76, pp. 206-215, 2012.
[2] M. Nimafar, V. Viktorov, and M. Martinelli, "Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels," Chemical Engineering Science, vol. 76, pp. 37-44, 2012.
[3] D. Sumi, A. Dhanabalan, B. H. S. Thimmappa, and S. Krishnamurthy, "Effect of colloidal silica dispersions on the properties of PDMS-colloidal silica composites," Journal of Applied Polymer Science, vol. 125, pp. E515-E522, 2012.
[4] X. P. Wang, T. Long, and R. M. Ford, "Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber," Biotechnology and Bioengineering, vol. 109, pp. 1622-1628, Jul 2012.
[5] M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer, vol. 37, pp. 2465-2470, 1996.
[6] W. J. J. Welters and L. G. J. Fokkink, "Fast Electrically Switchable Capillary Effects," Langmuir, vol. 14, pp. 1535-1538, 1998/03/01 1998.
[7] M. G. Pollack, R. B. Fair, and A. D. Shenderov, "Electrowetting-based actuation of liquid droplets for microfluidic applications," Applied Physics Letters, vol. 77, pp. 1725-1726, Sep 11 2000.
[8] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sensors and Actuators a-Physical, vol. 95, pp. 259-268, Jan 1 2002.
[9] S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Journal of Microelectromechanical Systems, vol. 12, pp. 70-80, 2003.
[10] H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, "Low voltage electrowetting-on-dielectric," Journal of Applied Physics, vol. 92, pp. 4080-4087, Oct 1 2002.
[11] Y. Li, W. Parkes, L. I. Haworth, A. W. S. Ross, J. T. M. Stevenson, and A. J. Walton, "Room-Temperature Fabrication of Anodic Tantalum Pentoxide for Low-Voltage Electrowetting on Dielectric (EWOD)," Journal of Microelectromechanical Systems, vol. 17, pp. 1481-1488, Dec 2008.
[12] M. Lane and D. K. Gardner, "Embryo culture medium: which is the best?," Best Practice & Research Clinical Obstetrics & Gynaecology, vol. 21, pp. 83-100, 2007.
[13] G. D. Smith, S. Takayama, and J. E. Swain, "Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies," Biol Reprod, vol. 86, p. 62, Mar 2012.
[14] S. Raty, E. M. Walters, J. Davis, H. Zeringue, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler, "Embryonic development in the mouse is enhanced via microchannel culture," Lab on a Chip, vol. 4, pp. 186-190, 2004.
[15] J. Melin, A. Lee, K. Foygel, D. E. Leong, S. R. Quake, and M. W. Yao, "In vitro embryo culture in defined, sub-microliter volumes," Dev Dyn, vol. 238, pp. 950-5, Apr 2009.
[16] M. Lane and D. K. Gardner, "Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro," Hum Reprod, vol. 7, pp. 558-62, Apr 1992.
[17] Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, "Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates," Hum Reprod, vol. 25, pp. 613-22, Mar 2010.
[18] K. Matsuura, N. Hayashi, Y. Kuroda, C. Takiue, R. Hirata, M. Takenami, Y. Aoi, N. Yoshioka, T. Habara, T. Mukaida, and K. Naruse, "Improved development of mouse and human embryos using a tilting embryo culture system," Reprod Biomed O nline, vol. 20, pp. 358-64, Mar 2010.
[19] Y. Xie, F. Wang, W. Zhong, E. Puscheck, H. Shen, and D. A. Rappolee, "Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis," Biol Reprod, vol. 75, pp. 45-55, Jul 2006.
[20] Y. Xie, F. Wang, E. E. Puscheck, and D. A. Rappolee, "Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos," Mol Reprod Dev, vol. 74, pp. 1287-94, Oct 2007.
[21] C. Han, Q. Zhang, R. Ma, L. Xie, T. Qiu, L. Wang, K. Mitchelson, J. Wang, G. Huang, J. Qiao, and J. Cheng, "Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device," Lab on a Chip, vol. 10, pp. 2848-2854, 2010.
[22] C. G. Cooney, C.-Y. Chen, M. R. Emerling, A. Nadim, and J. D. Sterling, "Electrowetting droplet microfluidics on a single planar surface," Microfluidics and Nanofluidics, vol. 2, pp. 435-446, Sep 2006.
[23] R. B. Brigid Hogan, Frank Costantini, Elizabeth Lacy, Manipulating the Mouse Embryo, A Laboratory Manual, Second ed., 1994.