簡易檢索 / 詳目顯示

研究生: 謝萍華
Hsieh, Ping-Hua
論文名稱: Adaptive Power and Energy Management of the Symmetric Key Cryptographic Cores
適用於對稱性密碼核心之功率與能量適應管理方法
指導教授: 黃稚存
Huang, Chih-Tsun
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 89
中文關鍵詞: 適用於對稱性密碼核心之功率與能量適應管理方法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在VLSI設計上,功率消耗已成為一項重要的課題。動態電源管理 (Dynamic Power Management)是一種常見的節省能源方法。然而,電源管理常伴隨著些許效能下降。因此,如何在功率消耗與效能之間取得平衡,便是一項重要的課題,我們的目標是希望能夠將效能缺失控制在10%以下,而盡可能去降低功率消耗。而以往的動態電源管理方法上,常重於以軟體設計方法,將問題映射至複雜的數學模型上以求得解答。然而,軟體方法對於處理器而言是一項極大的負擔。此篇論文提出了一個以硬體架構為基礎的動態電源管理模型,針對AES加密器設計一系列的管理方法。我們完整的建構出了一可調式的實驗環境,可根據不同的需求反覆實驗調整各項參數。除了基本的功率消耗考量以外,我們還將實做上可能碰到的各項實際情況如電源轉換效能及轉換功率也同時架構進去,以求得其結果合乎實際與精準。整體實驗環境是以SystemC建構,結果顯示我們的方法平均可減少53%的功率消耗,同時僅伴隨著6%的效能缺失,與我們設定的目標相符。日後此管理方法可將廣泛應用於通訊及安全的領域上。


    Power dissipation has became a critical concern for present VLSI
    design in recent years. DPM (Dynamic Power Management) is a common
    methodology which can dynamically scale the power level of ASIC to
    adapt their requirements at runtime. Unfortunately, power management
    usually accompanies some performance degradation. So how to
    eliminate the unnecessary power dissipation with minimum harm of
    performance will become a significant challenge for designers. Many
    preceding researches of DPM just focus on complicated mathematical
    solutions, which are hard to implement in hardware. When DPM
    methodologies are practiced in pure software, their efficiencies
    highly rely on the operating system. Moreover, huge computation
    overhead of DPM manipulation can become a burden of operation system
    to diminish the ability of main processor. Hence, a hardware-based
    DVFS power manager is proposed. Our structure contains simple
    computations that can be easily implemented in hardware but still
    maintain a well power managed facility. AES (Advanced Encryption
    Standard) is our DPM object, which is a fast cryptological scheme.
    Because this device does not always need the peak performance, it
    provides chances to reduce its overall energy dissipation with an
    appropriate DPM methodology. Different from traditional DPM
    researches, our proposed methodology contains many practical
    concerns like the level transition overhand or the power transform
    efficiency. These crucial concerns make it closer to the reality,
    but the complexity of DPM is also more difficult than others.
    Addition to basic DPM research, we combine 3 novel strategies into
    our primary DPM to handle some special situations. After these
    exception handling, our final methodology can be more stronger than
    the primitive one. In order to demonstrate our DPM efficiency, we
    generate a serial of user-defined test patterns which contain a
    variety of different workload distribution. For finding a general
    best solution, we construct a SystemC model to experiment and
    exploit many different DPM policies. The experimental results show
    that our ideal energy reduction can achieve 59.3% by the offline
    methodology, and the practical online methodology can reduce
    53.0% energy dissipation with just 6.0% performance
    degradation. With many practical concerns, our DPM methodology is
    still much close to the ideal offline results.

    1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Work 6 2.1 System-Level Power Management . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Dynamic Power Management . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Policy Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 Dynamic Voltage and Frequency Scaling . . . . . . . . . . . . . . . . 12 2.2 Design of AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 AES Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Power-aware AES Engine . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Chip Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 DPM System Modeling 22 3.1 System Architecture of AES power management . . . . . . . . . . . . . . . . 22 3.2 Power Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Discrete Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 State Transition Overhead . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.3 Transform Efficiency of ADPLL and DC-DC convertor . . . . . . . . 27 3.3 Workload Definition and Modeling . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 Terminologies definition of Service Requests . . . . . . . . . . . . . . 31 3.3.2 System Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.3 Workload distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Basic Power Management for AES 35 4.1 Offline Optimal Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Primary online DVFS methodology . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 Dynamic Power Management Flow . . . . . . . . . . . . . . . . . . . 39 4.2.2 Workload Prediction Method . . . . . . . . . . . . . . . . . . . . . . 40 4.2.3 Voltage and Frequency Scaling Method . . . . . . . . . . . . . . . . . 43 5 Implementation, Experiment and Analysis 47 5.1 Inplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.2 Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 50 6 Advanced DVFS Methodology Discussions 59 6.1 Suspended workload issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.1.3 Experiments and Result . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Variable parameters in DPM . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.3 Experiments and Result . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3 Immediate Change Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.3 Experiments and Result . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4 Integrated Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7 Conclusion and Future Work 83 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    [1] Luca Benini, Giovanni De Micheli and Enrico Macii, “Designing Low-Power Circuits:
    Practical Recipes”, Circuits and Systems Magazine, IEEE, vol. 1, pp. 6-25, 2001.
    [2] David Nguyen, Abhijit Davare, Michael Orshandky, David Chinnery, Brandon Thompson
    and Kurt Keutzer, “Minimization of Dynamic and Static Power Through Joint
    Assignment of Threshold Voltages and Sizing Optimization”, International Symposium
    on Low Power Electronics and Design, pp. 158-163, Aug. 2003.
    [3] Juan M. Cebri´an, Juan L. Arag´on and Jos´e M. Garc´ia, “Leakage Energy Reduction
    in Value Predictors through Static Decay”, Parallel and Distributed Processing Symposium,
    IEEE, pp. 1-7, 2007.
    [4] Zhigang Hu, Philo Juang, Kevin Skadron and Douglas Clark Margaret Martonosi, “Applying
    Decay Strategies to Branch Predictors for Leakage Energy Savings”, International
    Conference on Computer Design, IEEE, pp. 442-445, 2002.
    [5] Michel Goraczko, Jie Liu, Dimitrios Lymberopoulos, Slobodan Matic, Bodhi Priyantha
    and Feng Zhao, “Energy-Optimal Software Partitioning in Heterogeneous Multiprocessor
    Embedded Systems”, DAC, ACM/IEEE, pp 191-196, June, 2008.
    [6] Changjiu Xian, Yung-Hsiang Lu and Zhiyuan Li, “Energy-Aware Scheduling for
    Real-Time Multiprocessor Systems with Uncertain Task Execution Time”, DAC,
    ACM/IEEE, pp 664-669, June, 2007.
    [7] Ay¸se, Kıvılcım Co¸skun, Tajana ˇ Simuni´c Rosing, Keith A. Whisnant and Kenny C.
    Gross, “Static and Dynamic Temperature-Aware Scheduling for Multiprocessor SoCs”,
    Trans. on VLSI, IEEE, vol. 16, pp. 1127-1140, Sep. 2008.
    [8] Yung-Hsiang Lu and Giovanni De Micheli, “Comparing System-Level Power Management
    Policies”, Design and Test of Computers, IEEE, vol. 18, pp. 10-19, 2001.
    [9] Luca Benini, Alessandro Bogliolo and Giovanni De Micheli, “A Survey of Design Techniques
    for System-Level Dynamic Power Management”, Trans. on VLSI Systems, IEEE,
    vol. 8, no. 3, pp. 299-316, June 2000.
    [10] H.-A. Chuang, C.-T. Huang, “Design and Evaluation of a Power-Adaptive Methodology”,
    Master Thesis, Dept. of Computer Science, National Tsing Hua University,
    Hsinchu, Taiwan, Oct. 2008.
    [11] Hwisung Jung and Massoud Pedram, “Continuous Frequency Adjustment Technique
    Based on Dynamic Workload Prediction”, International Conference on VLSI Design,
    IEEE, 2008.
    [12] Peng Rong and Massoud Pedram, “Battery-Aware Power Management Based on Markovian
    Decision Processes”, Trans. on CAD, IEEE, vol. 25, no. 7, pp. 1337-1349, July
    2006.
    [13] Hwisung Jung and Massoud Pedram, “Improving the Efficiency of Power Management
    Techniques by Using Bayesian Classification”, International Symposium on Quality
    Electronic Design, IEEE, 2008.
    [14] Youngjin Cho and Naehyuck Chang, Chaitali Chakrabarti, Sarma Vrudhula, “High-
    Level Power Management of Embedded Systems with Application-Specific Energy Cost
    Functions”, DAC, IEEE, pp. 568-573, July 2006.
    [15] T. D. Burd, T. A. Pering, A. J. Stratakos and R. W. Brodersen, “A Dynamice Voltage
    Scaled Microprocessor System”, Journal of Solid-State Circuits, IEEE, vol. 35, no. 11,
    pp. 1571-1580, Nov. 2000.
    [16] Alexandru Andrei, Petru Eles, Zebo Peng, Marcus T. Schmitz and Bashir M. Al
    Hashimi, “Energy Optimization of Multiprocessor Systems on Chip by Voltage Selection”,
    Trans. on VLSI, IEEE, vol. 15, no. 3, pp 262-275, March 2007.
    [17] Zhen Cao, Brian Foo, Lei He and Mihaela van der schaar, “Optimality and Improvement
    of Dynamic Voltage Scaling Algorithms for Multimedia Applications”, DAC, IEEE,
    June, 2008.
    [18] Reinaldo Bergamaschi, et al. “Exploring Power Management in Multi-Core Systems”,
    Design Automation conference of Asia and South pacific(ASPDAC), pp. 708-713, Mar.
    2008.
    [19] Canturk Isci, Alper Buyuktosunoglu, Chen-Youn Cher, Pradip Bose and Margaret
    Martonosi,“An Analysis of Efficient Multi-Core global Power Management Policies Maximizing
    Performance for a Given Power Budget”, International Symposium on microarchitecture,
    IEEE/ACM, pp.347-358, 2006.
    [20] Ranjani Sridharan, Nikhil Gupta and Rabi Mahapatra, “Feedback-Controlled
    Reliability-Aware Power Management for Real-Time Embedded Systems”, DAC, IEEE,
    June, 2008.
    [21] Ganesh Dasika, Shidhartha Das, Kevin Fan, Scott Mahlke and David Bull, “DVFS in
    Loop Accelerators Using BLADES”, DAC, IEEE, June, 2008.
    [22] R. Muresan, H. Vahedi, Y. Zhanrong and S. Gregori, “Power-Smart System-On-
    Chip Architecture for Embedded Cryptosystems”, International Conference on Hardware/
    Software codesign and system synthesis, IEEE/ACM/IFIP, pp. 184-189, 2005.
    [23] Yan Gu, Samarjit Chakraborty and Wei Tsang Ooi, “Games are Up for DVFS”, DAC,
    IEEE, July, 2006.
    [24] Grigorios Magklis, Greg Semeraro, David H. Albonesi, Steven G. Dropsho, Sandhya
    Dwarkadas and Michael L. Scott, “Dynamic Frequency and Voltage Scaling for
    a Multiple-Clock-Domain Microprocessor”, Micro. IEEE, pp. 62-68, 2003.
    [25] Masakatsu Nakai, et al. “Dynamic Voltage and Frequency Management for a Low-Power
    Embedded Microprocessor”, Journal of Solid-State Circuits, IEEE, vol. 40, no. 1, Jan.
    2005.
    [26] IEEE Educational Activities Department, “What is Cryptography?”, IEEE Security
    and Privacy, vol. 4, issue 1, Jan, 2006.
    [27] National Instutute of Strandards and Technology (NIST), Advanced Encryption Standard
    (AES), National Technical Information Service, Springfield, VA 22161, Nov. 2001.
    [28] Jyu-Yuan Lai and Chih-Tsun Huang, “Elixir: High-Throughput Cost-Effective Dual-
    Field Processors and the Design Framework for Elliptic Curve Cryptography”, Trans.
    on VLSI, IEEE, pp. 1567-1580, June, 2008.
    [29] Z.-H. Shen, C.-T. Huang, “Design of a Power-Aware AES Cipher”, Master Thesis, Dept.
    of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, July. 2007.
    [30] C.-P. Su, T.-F. Lin, C.-T. Huang and C.-W. Wu, “A highly efficient AES cipher chip”,
    Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), pp. 561-562, Kitakyushu,
    Jan. 2003.
    [31] S.-Y. Lin and C.-T. Huang, “A High-Throughput Low-Power AES Cipher for Network
    Applications”, Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), pp.
    595-600, 2007.
    [32] Bor-Tyng Lin, Ruei-Wun Sun and Hsi-Pin Ma, “A low power/low voltage standard cell
    library design for digital integrated circuit”, VLSI Design/CAD Symposium, Aug. 2008.
    [33] S. Zhou, G. A. Rinc´on-Mora, “A High Efficiency, Soft Switching DC-DC Converter
    With Adaptive Current-Ripple Control for Portable Applications”, Trans. on Circuits
    and Systems, IEEE, Vol. 53, No. 4, pp. 319-323, 2006.
    [34] Puru Choudhary, Diana Marculescu, “Power Management of Voltage/Frequency Island-
    Based Systems Using Hardware-Based Methods”, Trnas. on VLSI, IEEE, vol. 17, no.
    3, pp. 427-438, March 2009.
    [35] Amit Sinha and Anantha P. Chandrakasan, “Dynamic Voltage Scheduling Adaptive
    Filtering of Worklaod Traces”, Conf. in VLSI Design, IEEE, pp. 221-226, Jan. 2001.
    [36] Yan Gu and Smamrjit chakraborty, “Control Theory-based DVS for Interactive 3D
    Games”, DAC, IEEE, June, 2008.
    [37] Design Automation Standards Committee of the IEEE Computer Society, IEEE Std
    1666 - 2005 IEEE Standard SystemC Language Reference Manual, 2006.
    [38] M. Najibi, M. Salehi, A. A. Kusha, M. Pedram, S. M. Fakhraie and H. Pefram, “Dynamic
    Voltage and Frequency Management Based on Variable Update Intervals for
    Frequency Setting”, Proc. of IEEE/ACM international conference on Computer-aided
    design (ICCAD), pp. 755-760, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE