簡易檢索 / 詳目顯示

研究生: 黃至正
Huang, Chih-Cheng
論文名稱: 以氮化鋁鎵/氮化鎵高電子遷移率電晶體研究蛋白質與縮氨酸之鍵結親和力
Study of protein-peptide binding affinity with AlGaN/GaN high electron mobility transistors
指導教授: 王玉麟
Wang, Yu-Lin
口試委員: 黃鈺棻
Huang, Yu-Fen
王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 51
中文關鍵詞: biosensorshigh electron mobility transistorsprotein-peptide binding affinitydissociation constantferritin heavy chain
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, antibody-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) were used for detecting a short peptide, and revealing the number of binding sites of the antibody (protein) for the peptide and the dissociation constants of the antibody-peptide (protein-peptide) complex. Two binding sites were found on this antibody and the dissociation constants of the antibody-peptide complex were 2.723x10-11M and 6.994x10-9M for the two binding sites, respectively. The estimated dissociation constants are consistent within the reasonable range of the IGg antibody-antigen complexes binding constants. It also reveals the limit of detection is not only decided by the performance of the transistors but also the dissociation constant of the detected molecules. Compared with other methods and techniques investigating the binding affinity and kinetics of biological molecules, we do demonstrate AlGaN/GaN HEMTs have a great potential to compete with conventional or proposed methods.


    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 2 Chapter 2 Literature Review 4 2.1 Fabrication of AlGaN/GaN HEMTs 4 2.2 Surface Modification and Immobilization. 6 2.3 AlGaN/GaN HEMT-based Sensors: 8 2.4 Study of Ligand-Receptor Binding Affinity 11 2.4.1 The Langmuir Isotherm 11 2.4.2 Study of Binding Affinity Using FET-based Sensors. 12 Chapter 3 Experimental 18 3.1 Principles of AlGaN/GaN HEMT Based Sensors 18 3.2 Sensor Fabrication 19 3.3 Surface Immobilization 27 3.4 Sensor Measurement 30 Chapter 4 Results and Discussion 33 4.1 Real-Time Detection 33 4.2 Langmuir Isotherm 35 4.3 Curve Fitting for one binding site model 36 4.4 Curve Fitting for Two Binding Site Model 39 Chapter 5 Conclusion and Future work 43 List of Reference 47

    1. Bertucci, C. and S. Cimitan, Rapid screening of small ligand affinity to human serum albumin by an optical biosensor. Journal of Pharmaceutical and Biomedical Analysis, 2003. 32(4-5): p. 707-714.
    2. Morrill, P.R., R.B. Millington, and C.R. Lowe, Imaging surface plasmon resonance system for screening affinity ligands. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2003. 793(2): p. 229-251.
    3. Kim, D.H., et al., Premature antibodies with rapid reaction kinetics and their characterization for diagnostic applications. Analytical Biochemistry, 2012. 420(1): p. 54-60.
    4. Krusinski, T., A. Ozyhar, and P. Dobryszycki, Dual FRET assay for detecting receptor protein interaction with DNA. Nucleic Acids Research, 2010. 38(9): p. e108.
    5. Orosz, F. and J. Ovadi, A simple method for the determination of dissociation constants by displacement ELISA. Journal of Immunological Methods, 2002. 270(2): p. 155-162.
    6. Chiad, K., et al., Isothermal Titration Calorimetry: A Powerful Technique To Quantify Interactions in Polymer Hybrid Systems. Macromolecules, 2009. 42(19): p. 7545-7552.
    7. del Toro, M., et al., Study of the interaction between the G-quadruplex-forming thrombin-binding aptamer and the porphyrin 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)-21, 23H-porphyrin tetratosylate. Analytical Biochemistry, 2008. 379(1): p. 8-15.
    8. Homola, J., Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 2008. 108(2): p. 462-493.
    9. Mitsakakis, K. and E. Gizeli, Multi-sample acoustic biosensing microsystem for protein interaction analysis. Biosensors & Bioelectronics, 2011. 26(11): p. 4579-4584.
    10. Dragusanu, M., et al., On-Line Bioaffinity-Electrospray Mass Spectrometry for Simultaneous Detection, Identification, and Quantification of Protein-Ligand Interactions. Journal of the American Society for Mass Spectrometry, 2010. 21(10): p. 1643-1648.
    11. Liu, Y., et al., Selection of ligands for affinity chromatography using quartz crystal biosensor. Analytical Chemistry, 2005. 77(13): p. 4248-4256.
    12. Gochin, M., et al., A fluorescence assay for rapid detection of ligand binding affinity to HIV-1 gp41. Biological Chemistry, 2006. 387(4): p. 477-483.
    13. Jing, M. and M.T. Bowser, Methods for measuring aptamer-protein equilibria: A review. Analytica Chimica Acta, 2011. 686(1-2): p. 9-18.
    14. Wang, W.U., et al., Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(9): p. 3208-3212.
    15. Lin, T.W., et al., Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(3): p. 1047-1052.
    16. Chen, Y.N., et al., Electronic Detection of Lectins Using Carbohydrate-Functionalized Nanostructures: Graphene versus Carbon Nanotubes. Acs Nano, 2012. 6(1): p. 760-770.
    17. Wang, Y.-L., et al., Botulinum toxin detection using AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2008. 93(26): p. 262101-3.
    18. Wang, Y.-L., et al., Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2009. 94(24): p. 243901.
    19. Hung, S.C., et al., Minipressure sensor using AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2009. 94(4): p. 043903.
    20. Hung, S.C., et al., Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2008. 92(19): p. 193903.
    21. Hung, S.C., et al., Integration of selective area anodized AgCl thin film with AlGaN/GaN HEMTs for chloride ion detection. Electrochemical and Solid State Letters, 2008. 11(9): p. H241-H244.
    22. Kang, B.S., et al., Pressure-induced changes in the conductivity of AlGaN/GaN high-electron mobility-transistor membranes. Applied Physics Letters, 2004. 85(14): p. 2962-2964.
    23. Kang, B.S., et al., Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2006. 89(12): p. 122102.
    24. Kang, B.S., et al., Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors. Applied Physics Letters, 2005. 87(2): p. 023508.
    25. Kang, B.S., et al., Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. Journal of Applied Physics, 2008. 104(3): p. 031101.
    26. Kang, B.S., et al., Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2007. 91(25): p. 252103.
    27. Chen, K.H., et al., c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection. Applied Physics Letters, 2008. 92(19): p. 192103.
    28. Chen, K.H., et al., Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sensors and Actuators B: Chemical, 2008. 134(2): p. 386-389.
    29. Chang, C.Y., et al., CO(2) detection using polyethylenimine/starch functionalized AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2008. 92(23): p. 232102.
    30. Chu, B.H., et al., Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nanorods grown on the gate region. Applied Physics Letters, 2008. 93(4): p. 042114.
    31. Pearton, S.J., et al., Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science, 2010. 55(1): p. 1-59.
    32. Yu, X., et al., Wireless hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode sensors. Sensors and Actuators B-Chemical, 2008. 135(1): p. 188-194.
    33. Bautista, J.J., HEMT Low-Noise Amplifiers, in Low-Noise Systems in the Deep Space Network2008, John Wiley & Sons. p. 195-253.
    34. Bright, A.N., Thomas, P. J., Weyland, M., Tricker, D. M., Humphreys, C. J., & Davies, R., Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy. Journal of Applied Physics, 2001. 89(6): p. 3143.
    35. Chou, C.H., et al., High thermally stable Ni/Ag(Al) alloy contacts on p-GaN. Applied Physics Letters, 2007. 90(2): p. 022103-3.
    36. Soltani, A., et al., Development and analysis of low resistance ohmic contact to n-AlGaN/GaN HEMT. Diamond and Related Materials, 2007. 16(2): p. 262-266.
    37. Feng, Q., et al., The improvement of ohmic contact of Ti/Al/Ni/Au to AlGaN/GaN HEMT by multi-step annealing method. SOLID-STATE ELECTRONICS, 2009. 53(9): p. 955-958.
    38. Schroder, D.K., Contact Resistance and Schottky Barriers, in Semiconductor Material and Device Characterization2005, John Wiley & Sons, Inc. p. 127-184.
    39. Greg T. Hermanson, A.K.M., and Paul K. Smith, Immobilized affinity ligand techniques1992: Academic Press in San Diego.
    40. Grabarek, Z. and J. Gergely, Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry, 1990. 185(1): p. 131-135.
    41. Lomant, A.J. and G. Fairbanks, Chemical probes of extended biological structures: Synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate). Journal of Molecular Biology, 1976. 104(1): p. 243-261.
    42. Cuatrecasas, P. and I. Parikh, Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry, 1972. 11(12): p. 2291-2299.
    43. Staros, J.V., R.W. Wright, and D.M. Swingle, Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Analytical Biochemistry, 1986. 156(1): p. 220-222.
    44. Wang, Y.-L., et al., Long-term stability study of botulinum toxin detection with AlGaN/GaN high electron mobility transistor based sensors. Sensors and Actuators B: Chemical, 2010. 146(1): p. 349-352.
    45. Visintin, P.M., M.B. Korzenski, and T.H. Baum, Liquid Clean Formulations for Stripping High-Dose Ion-Implanted Photoresist from Microelectronic Devices. Journal of The Electrochemical Society, 2006. 153(7): p. G591-G597.
    46. Chrisey, L.A., G.U. Lee, and C.E. O'Ferrall, Covalent Attachment of Synthetic DNA to Self-Assembled Monolayer Films. Nucleic Acids Research, 1996. 24(15): p. 3031-3039.
    47. Shlyakhtenko, L.S., et al., Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy. 97(1-4): p. 279-287.
    48. Diaz-Quijada, G.A. and D.D.M. Wayner, A Simple Approach to Micropatterning and Surface Modification of Poly(dimethylsiloxane). Langmuir, 2004. 20(22): p. 9607-9611.
    49. Tsai, C.-C.C., Pei-Ling; Sun, Chih-Jung; Lin, Tsung-Wu; Tsai, Ming-Hsueh; Chang, Yun-Chorng; Chen, Yit-Tsong, Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology, 2011. 22(13): p. 5503.
    50. Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
    51. Wang, H.-T., et al., Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB[sub 2]-based Ohmic contacts. Applied Physics Letters, 2007. 90(25): p. 252109-3.
    52. Hung, C.-W., et al., Comprehensive study of a Pd–GaAs high electron mobility transistor (HEMT)-based hydrogen sensor. Sensors and Actuators B: Chemical, 2007. 122(1): p. 81-88.
    53. Wang, H.-T., et al., Robust detection of hydrogen using differential AlGaN/GaN high electron mobility transistor sensing diodes. Applied Physics Letters, 2006. 89(24): p. 242111-3.
    54. Wang, Y.-L., et al., Oxygen gas sensing at low temperature using indium zinc oxide-gated AlGaN/GaN high electron mobility transistors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010. 28(2): p. 376-379.
    55. Lee, C.S., S.K. Kim, and M. Kim, Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors, 2009. 9(9): p. 7111-7131.
    56. Shin, K.S., et al., Schottky Contacted Nanowire Field-Effect Sensing Device With Intrinsic Amplification. Ieee Electron Device Letters, 2010. 31(11): p. 1317-1319.
    57. Knopfmacher, O., et al., Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Letters, 2010. 10(6): p. 2268-2274.
    58. Langmuir, I., The constitution and fundamental properties of solids and liquids Part I Solids. Journal of the American Chemical Society, 1916. 38: p. 2221-2295.
    59. Langmuir, I., The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 1917. 39: p. 1848-1906.
    60. Maehashi, K., et al., Aptamer-Based Label-Free Immunosensors Using Carbon Nanotube Field-Effect Transistors. Electroanalysis, 2009. 21(11): p. 1285-1290.
    61. Vedala, H., et al., Nanoelectronic Detection of Lectin-Carbohydrate Interactions Using Carbon Nanotubes. Nano Letters, 2011. 11(1): p. 170-175.
    62. Chen, J.L., et al., Graphene Oxide Based Photoinduced Charge Transfer Label-Free Near-Infrared Fluorescent Biosensor for Dopamine. Analytical Chemistry, 2011. 83(22): p. 8787-8793.
    63. Hsu, Y.P., et al., ICP etching of sapphire substrates. Optical Materials, 2005. 27(6): p. 1171-1174.
    64. Tong Wu, Z.-B.H., Guang Tang and Yi Luo, Dry Etching Characteristics of AlGaN/GaN Heterostructures Using Inductively Coupled H2/Cl2, Ar/Cl2 and BCl3/Cl2 Plasmas. Japanese Journal of Applied Physics, 2003. 42(Part 2, No. 3A).
    65. Saha, K., F. Bender, and E. Gizeli, Comparative study of IgG binding to proteins G and A: Nonequilibrium kinetic and binding constant determination with the acoustic waveguide device. Analytical Chemistry, 2003. 75(4): p. 835-842.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE