研究生: |
江冠廷 |
---|---|
論文名稱: |
PVdF比例及白金粒子對鋰空氣電池的電性表現影響 Influence of Pt Nanoparticles and Fraction of PVdF on the Electrochemical Performance of Lithium Air Battery |
指導教授: | 蔡哲正 |
口試委員: |
顏光甫
蔡哲正 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 電池 、鋰空氣電池 、石墨烯 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰空氣電池因為使用鋰金屬做為電池陽極,並自空氣中擷取氧氣作為電池陰極,因此大幅減少電池本身載重,提升單位重量能量密度,擁有高達3860 mAhg-1的理論電容量,是目前最接近石油能量密度的替代性能源載體,在面臨能源危機的當下,有潛力成為新興的替代性能源載體。
鋰空氣電池的陰極為氧氣,在其他電池中原本應為陰極的位置,取而代之的是可催化充放電反應的多孔空氣電極,多使用可有效降低反應活化能的材料製作,以提升鋰空氣電池的電性表現,除此之外空氣電極的孔隙分佈會影響氣體可反應的有效面積,進而影響催化劑的利用效率決定最後電性表現的優劣。
本研究中使用Graphene做為空氣電極基材,探討電極的製作過程中調變黏著劑 (binder)比例是否會影響空氣電極的孔隙率,並在Graphene基材中接合白金粒子,比較接合前後的電性表現判斷白金是否可以有效降低充放電反應的活化能,藉以控制鋰空氣電池的電性表現。
參考文獻
1. Wang, J., Y. Li, and X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy, 2013. 2(4): p. 443-467.
2. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
3. Yang, S., et al., High Tap Density Spherical Li[Ni0.5Mn0.3Co0.2]O2 Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries. International Journal of Electrochemistry, 2012. 2012: p. 9.
4. Zhang, S., Li2MnSiO4/Carbon Composite Nanofibers as a High-Capacity Cathode Material for Li-Ion Batteries. Soft Nanoscience Letters, 2012. 02(03): p. 0-0.
5. Wolfenstine, J. and J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005. 142(1-2): p. 389-390.
6. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1194.
7. Padhi, A.K., et al., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 1997. 144(5): p. 1609-1613.
8. Nytén, A., et al., Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochemistry Communications, 2005. 7(2): p. 156-160.
9. Dominko, R., et al., Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Communications, 2006. 8(2): p. 217-222.
10. Gover, R., et al., LiVPO4F: A new active material for safe lithium-ion batteries. Solid State Ionics, 2006. 177(26-32): p. 2635-2638.
11. Bruce, P.G., L.J. Hardwick, and K.M. Abraham, Lithium-air and lithium-sulfur batteries. MRS Bulletin, 2011. 36(07): p. 506-512.
12. Bruce, P.G., et al., Li-O(2) and Li-S batteries with high energy storage. Nat Mater, 2011. 11(2): p. 172.
13. Yang, Y., G. Zheng, and Y. Cui, Nanostructured sulfur cathodes. Chem Soc Rev, 2013. 42(7): p. 3018-32.
14. Littauer, E.L. and K.C. Tsai, ANODIC BEHAVIOR OF LITHIUM IN AQUEOUS-ELECTROLYTES .4. INFLUENCE OF TEMPERATURE. Journal of the Electrochemical Society, 1980. 127(3): p. 521-524.
15. Abraham, K.M. and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 1996. 143(1): p. 1-5.
16. Ogasawara, T., et al., Rechargeable Li2O2 electrode for lithium batteries. Journal of the American Chemical Society, 2006. 128(4): p. 1390-1393.
17. http:// www.ibm.com/smarterplanet/us/en/smart_grid/article/battery500. html.
18. Rahman, M.A., X. Wang, and C. Wen, A review of high energy density lithium–air battery technology. Journal of Applied Electrochemistry, 2013. 44(1): p. 5-22.
19. He, P., Y. Wang, and H. Zhou, A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry Communications, 2010. 12(12): p. 1686-1689.
20. Siraj, K., Past Present and Future of Superionic Conductors. International Journal of Nano and Material Sciences, 2012.
21. Yoo, E. and H. Zhou, Li-Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts. Acs Nano, 2011. 5(4): p. 3020-3026.
22. Hardwick, L.J. and P.G. Bruce, The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Current Opinion in Solid State and Materials Science, 2012. 16(4): p. 178-185.
23. Xiao, J., et al., Optimization of Air Electrode for Li/Air Batteries. Journal of The Electrochemical Society, 2010. 157(4): p. A487.
24. Yang, Y., et al., Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium Air Batteries. Journal of The Electrochemical Society, 2011. 158(10): p. B1211.
25. Henderson, N.L., et al., Ambient-pressure synthesis of SHG-Active Eu2Ti2O7 with a 110 layered perovskite structure: Suppressing pyrochlore formation by oxidation of perovskite-type EuTiO3. (vol 19, pg 1883, 2007). Chemistry of Materials, 2007. 19(24): p. 6058-6058.
26. Cheng, H. and K. Scott, Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. Journal of Power Sources, 2010. 195(5): p. 1370-1374.
27. Yang, X.-h., P. He, and Y.-y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochemistry Communications, 2009. 11(6): p. 1127-1130.
28. Mirzaeian, M. and P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica Acta, 2009. 54(28): p. 7444-7451.
29. Arai, H., S. Muller, and O. Haas, AC impedance analysis of bifunctional air electrodes for metal-air batteries. Journal of the Electrochemical Society, 2000. 147(10): p. 3584-3591.
30. Ottakam Thotiyl, M.M., et al., The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc, 2013. 135(1): p. 494-500.
31. Aurbach, D., et al., THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS. Journal of Electroanalytical Chemistry, 1991. 297(1): p. 225-244.
32. Liu, K.C. and M.A. Anderson, Porous nickel oxide films for electrochemical capacitors, in Materials for Electrochemical Energy Storage and Conversion - Batteries, Capacitors and Fuel Cells, D.H. Doughty, et al., Editors. 1995. p. 427-432.
33. Read, J., Characterization of the Lithium/Oxygen Organic Electrolyte Battery. Journal of The Electrochemical Society, 2002. 149(9): p. A1190.
34. Read, J., et al., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery. Journal of The Electrochemical Society, 2003. 150(10): p. A1351.
35. Higgins, D.C., D. Meza, and Z. Chen, Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2010. 114(50): p. 21982-21988.
36. Kuboki, T., et al., Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. Journal of Power Sources, 2005. 146(1-2): p. 766-769.
37. L. I. Soliman, W.M.S., Some Physical Properties of Vinylpyridine Carbon Black Composites. Egypt. 2002. 25.
38. Dubot, P. and P. Cenedese, Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes. Physical Review B, 2001. 63(24).
39. Tsubomura, H., et al., DYE SENSITIZED ZINC-OXIDE - AQUEOUS-ELECTROLYTE - PLATINUM PHOTOCELL. Nature, 1976. 261(5559): p. 402-403.
40. Hull, R.V., et al., Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chemistry of Materials, 2006. 18(7): p. 1780-1788.
41. Lin, Y.H., et al., Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. Journal of Physical Chemistry B, 2005. 109(30): p. 14410-14415.
42. Li, X.M., et al., Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study. Journal of Molecular Structure: THEOCHEM, 2009. 901(1-3): p. 103-109.
43. Qian, Y., et al., Facile Preparation and Electrochemical Properties of V2O5-Graphene Composite Films as Free-Standing Cathodes for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2012. 159(8): p. A1135-A1140.
44. Kaniyoor, A., et al., Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 2009. 1(3): p. 382-6.