研究生: |
陳咨佑 Chen, Tzu-Yu |
---|---|
論文名稱: |
利用電漿子雙線傳輸線達成功能性奈米光學迴路:二次諧波產生及光循環器 Plasmonic Two-Wire Transmission Line for Functioning Nano-Circuit: Second Harmonic Generation and Optical Circulation |
指導教授: |
黃承彬
Huang, Chen-Bin |
口試委員: |
盧廷昌
Lu, Tien-Chang 陳國平 Chen, Kuo-Ping 張允崇 Chang, Yun-Chorng 劉昌樺 Liu, Chang-Hua |
學位類別: |
博士 Doctor |
系所名稱: |
教務處 - 跨院國際博士班學位學程 International Intercollegiate PhD Program |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 表面電漿 、非線性光學 、二次諧波產生 、光循環器 、奈米結構 |
外文關鍵詞: | surface plasmon, nonlinear optics, second harmonic generation, optical circulator, nano structure |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米尺度下的非線性頻率轉換至今仍然是個很大的挑戰,但其在許多領與諸如多功能光路、生物傳感、奈米光譜、奈米粒子操作及奈米醫學上都非常具有發展潛力。由於非線性光學對於電場強度的需求非常高,而局域性表面電漿此一現象由於能大幅地在局部提供極為強大的電場強度,因此非常適合用來產生非線性的訊號。而對於二次諧波產生來說,由於其產生機制的緣故,當我的使用的材料及結構為中心對稱時,即使能因局域性表面電漿產生極高的電場強度,其仍然無法產生二次諧波訊號。因此,若是想利用表面電漿共振產生二次諧波訊號的話,必須利用不對稱的材料或是利用不對稱的奈米結構。但事實上,還有另一種與局域表面電漿同屬表面電漿範疇的現象,也就是表面電漿子。在此研究的第一部分中,我們展示了一個以單晶金為材料且中心對稱的結構,雙線傳輸線,再利用表面電漿子做為光源以產生二次諧波訊號。並證明了即使在不打破對稱性的前提下,只要利用表面電漿子而非局域表面電漿,其仍然能夠產生二次諧波訊號
在第二部分的研究中,我們利用雙線傳輸線擁有兩種不同的傳遞模態的特性,並透過對稱模態及非對稱模態間的線性疊加,使表面電漿子訊號能集中往其中一條單線傳輸線傳遞,並透過將此種結構簡單地互相對接而製成一種電漿子光循環器。此種光循環器能夠藉由輸入不同的偏振態來改變其循環的方向。
Nonlinear optical frequency conversion in the nanoscale remains a challenge, but may pave the path towards the long envisaged multi-functional optical circuit, bio-sensing, nanospectroscopy, nanoparticle manipulation, and nanomedicine. Surface plasmon fields are highly spatially confined near the metal/dielectric interface and exhibit simultaneously giant field enhancement. These two attributes are invaluable for nonlinear optics with plasmons. However, second-harmonic generation (SHG) in bulk is forbidden in centro-symmetric materials such as typical noble metals. Past efforts concentrated on the broken symmetry at the surface in combination with an asymmetric shape of the particle.
We introduce a new way of breaking the symmetry by a propagating mode of a plasmonic waveguide, a two-wire transmission-line (TWTL). We demonstrate that an optical mode of correct symmetry is sufficient to allow SHG even in centro-symmetric structures made of centro-symmetric material. This is a new degree of freedom for on-chip nonlinear signal processing in nanophotonics.
A plasmonic circulator is also presented in this work. Due to TWTL have two different propagation mode. By simply superimposed the symmetric and anti-symmetric mode together, we can let SPP signal only focus on one side of the TWTL and cause SPP signal only propagation through one direction, and then make a circulator by this phenomenon. For this kind of circulator we can simply switch the direction by changing the polarization state of the input light source. We experimentally verified the functioning of the plasmonic circulator.
[1] E. Ozbay. Science, 311(5758):189{193, 2006.
[2] N. Engheta. Science, 317(5845):1698-1702, 2007.
[3] A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S.
[4] N. Kotov. Nature Materials, 10:903, 2011.
[5] V. Kravtsov, R. Ulbricht, J. M. Atkin, and M. B. Raschke. Nature Nanotechnology,
11:459-465, 2016.
[6] W.-Y. Tsai, J.-S. Huang, and C-B. Huang. Nano Letters, 14(2):547-552, 2014.
[7] A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N.
Prasad. Nature Photonics, 8:455-461, 2014.
[8] D. Wolf, T. Schumacher, and M. Lippitz. Nature Communications, 7:10361, 2016.
[9] M. Kauranen and A. V. Zayats. Nature Photonics, 6:737-748, 2012.
[10] K. O'Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X.Yin, and X. Zhang. Nature Materials, 14:379-383, 2015.
[11] M. Celebrano, X. Wu, M. Baselli, S. Grofmann, P. Biagioni, A. Locatelli,
C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, Lamberto Duo, F. Ciccacci, and M. Finazzi. Nature Nanotechnology, 10:412-417, 2015.
[12] J. Obermeier, T. Schumacher, and M. Lippitz. Advances in Physics: X, 3(1):1454341, 2018.
[13] F. Brown, R. E. Parks, and A. M. Sleeper. Phys. Rev. Lett., 14:1029{1031, 1965.
[14] N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee. Phys. Rev., 174:813-822, 1968.
[15] J. Makitalo, S. Suuriniemi, and M. Kauranen. Opt. Express, 19(23):23386-23399, 2011.
[16] J. Butet, P.-F. Brevet, and O. J. F. Martin. ACS Nano, 9(11):10545-10562, 2015.
[17] T. Zentgraf, A. Christ, J. Kuhl, and Harald Giessen. Physical Review Letters, 93(24):243901, 2004.
[18] B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg. Applied Physics B: Lasers and Optics, 69(3):223{227, 1999.
[19] E. Ozbay, Science 311,189, 2006.
[20] S. A. Maier, Plasmonics: fundamentals and applications, Springer, 2007.
[21] P. Biagioni, J.S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402, 2012.
[22] K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397, 2007.
[23] C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, Nano Lett. 10, 592, 2010.
[24] Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494, 2011.
[25] D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402, 2003.
[26] For example: Y. Gorodetski, A Niv, V. Kleiner, and E. Hasman, Phys. Rev. Lett. 101, 043903, 2008.
[27] C.‐T. Ku, H.‐N. Lin, and C.‐B. Huang, Appl. Phys. Lett. 106, 053112, 2015.
[28] C.‐D. Ku, W.‐L. Huang, J.‐S. Huang, and C.‐B. Huang, IEEE Photon. J. 5, 4800409, 2013.
[29] W.‐Y. Tsai, J.‐S. Huang, and C.‐B. Huang, Nano Lett. 14, 547, 2014.
[30] W.‐H. Dai,1 F.‐C. Lin,2 C.‐B. Huang,1 and J.‐S. Huang, Nano Lett. 14, 3881, 2014.
[31] Y.‐T. Hung, C.‐B. Huang, and J.‐S. Huang, Opt. Express 20, 20342, 2012.
[32] P. Geisler, G. Razinskas, E. Krauss, X.‐F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C.‐B. Huang, T.Brixner, and B. Hecht, Phys. Rev. Lett. 111, 183901, 2013.
[33] C.C. Chen, I.C. Hsieh, S.D. Yang, C.B. Huang, Opt. Express 20, 27062, 2012.
[34] V.M. Agranovich, D.L. Mills, Surface Polaritons, North-Holland, Amsterdam, 1982.
[35] H. Raether, Surface Plasmons, Springer-Verlag, Berlin, 1988.
[36] A.D. Boardman, Electromagnetic Surface Modes, JohnWiley & Sons, NewYork, 1982.
[37] A.V. Zayats et al., Phys. Rep. 408, 131–314 (2005).
[38] W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824, 2003.
[39] A.V. Zayats, I.I. Smolyaninov, J. Opt. A: Pure Appl. Opt. 5, S16 (2003.
[40] A.V. Zayats, I.I. Smolyaninov, A.A Maradudin, Phys. Reports. 408, 131-314. 2005.
[41] P. Geisler, G. Razinskas, E. Krauss, X.-F. Wu, C. Rewitz, P. Tuchscherer,
S. Goetz, C.-B. Huang, T. Brixner, and B. Hecht. Phys. Rev. Lett., 111:183901, 2013.
[42] X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz. Nano Letters, 17(7):4291-4296, 2017.
[43] W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang. Nano Letters, 14(7):3881-3886, 2014.
[44] Y. Zhang, N.-K. Grady, C. Ayala-Orozco; N.-J. Halas. NanoLett. 2011, 11, 5519−5523.
[45] K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang. Nat. Mater. 2015, 14, 379−383.
[46] R. Czaplicki, J. Mak̈ italo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, M. Kauranen. Nano Lett. 2015, 15, 530−534.
[47] L. Duò, F. Ciccacci, M. Finazzi. Nat. Nanotechnol. 2015, 10, 412−295 417.
[48] T. -P. Sidiropoulos, M. Navarro-Cía, S. -A. Maier, R. –F. Oulton. Nano Lett. 2016, 16, 5278−5285.
[49] S. Chervinskii, K. Koskinen, S. Scherbak, M. Kauranen, A. Lipovskii. Phys. Rev. Lett. 2018, 120, 113902.
[50] C. K. Chen, A. R. B. de Castro, and Y. R. Shen. Opt. Lett., 4(12):393{394, 1979}.
[51] S. Viarbitskaya, O. Demichel, B. Cluzel, G.C. des Francs, and A. Bouhelier. Phys.
Rev. Lett., 115:197401, 2015.
[52] A. de Hoogh, A. Opheij, M. Wulf, N. Rotenberg, and L. Kuipers. ACS Photonics, 3(8):1446-1452, 2016.
[53] Y. Li, Meng Kang, J. Shi, K. Wu, S. Zhang, and H. Xu. Nano Letters, 17(12):7803-7808, 2017.
[54 ] S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai.
Nature Materials, 14(8):807-811, 2015.
[55] S. Roke, M. Bonn, A. -V. Petukhov. Phys. Rev. B: Condens. 329 Matter Mater. Phys. 2004, 70, 9374−10.
[56] Z. Yu, S. Fan. Nat. Photon. 2009, 3, 91-94.
[57] D. –L. Sounas, C. Caloz, A. Alù. Nat. Comm. 2013, 4:2407.
[58] L. Bi, J. Hu, P. Jiang, D. -H. Kim, G. -F. Dionne, L. -C. Kimerling, C. -A. Ross. Nat. Photon. 2011, 5, 758-762.
[59] L. Feng, M. Ayache, J. Huang, Y. -L. Xu, M. -H. Lu, Y. -F. Chen, Y. Fainman, A. Scherer. Science 2011, 333, 729-733.
[60] Z. Shen, Y. -L. Zhang, Y. Chen, C. -L. Zou, Y. -F. Xiao, X. -B. Zou, F.-W. Sun, G. -C. Guo, C. -H. Dong. Nat. Photon. 2016, 10, 657-662.
[61] F. Ruesink, M. -A. Miri, A. Alù, E. Verhagen. Nat. Comm. 2016, 7:13662.
[62] P. Geisler, G. Razinskas, E. Krauss, X.-F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C.-B. Huang, T. Brixner, B. Hecht. Phys. Rev. Lett. 2013, 111, 183901.
[63] W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang. Nano Letters, 14(7):3881-3886, 2014.
[64] C. Rewitz, G. Razinskas, P. Geisler, E. Krauss, S. Goetz, M. Pawlowska, B. Hecht, T. Brixner. Phys. Rev. Appl. 2014, 1, 014007.
[65] E. Krauss, G. Razinskas, D. Köck, S. Grossmann, B. Hecht. Nano Lett. 2019, 19, 3364-3369.
[66] T. -Y. Chen, J. Obermeier, T. Schumacher, F.-C. Lin, J.-S. Huang, M. Lippitz, C. -B. Huang. Nano Lett. 2019, 19, xxxx-xxxx.
[67] K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, Y. Guo. Opt. Express 2012, 20, 28025-28032.
[68] A. -R. Davoyan, N. Engheta. Phys. Rev. Lett. 2013, 111, 047401.
[69] A. -R. Davoyan, N. Engheta. New J. Phys. 2013, 15, 083054.
[70] J. Pan, J. Wang, T. Qiu, Y. Pang, Y. Li, J. Zhang, S. Qu. AIP Adv. 2018, 8, 055002.